同步森林替换语法

IF 0.3 Q4 COMPUTER SCIENCE, CYBERNETICS
A. Maletti
{"title":"同步森林替换语法","authors":"A. Maletti","doi":"10.14232/actacyb.23.1.2017.15","DOIUrl":null,"url":null,"abstract":"The expressive power of synchronous forest (tree-sequence) substitution grammars (SFSG) is studied in relation to multi bottom-up tree transducers (MBOT). It is proved that SFSG have exactly the same expressive power as compositions of an inverse MBOT with an MBOT. This result is used to derive complexity results for SFSG and the fact that compositions of an MBOT with an inverse MBOT can compute tree translations that cannot be computed by any SFSG, although the class of tree translations computable by MBOT is closed under composition.","PeriodicalId":42512,"journal":{"name":"Acta Cybernetica","volume":"10 1","pages":"235-246"},"PeriodicalIF":0.3000,"publicationDate":"2013-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Synchronous Forest Substitution Grammars\",\"authors\":\"A. Maletti\",\"doi\":\"10.14232/actacyb.23.1.2017.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The expressive power of synchronous forest (tree-sequence) substitution grammars (SFSG) is studied in relation to multi bottom-up tree transducers (MBOT). It is proved that SFSG have exactly the same expressive power as compositions of an inverse MBOT with an MBOT. This result is used to derive complexity results for SFSG and the fact that compositions of an MBOT with an inverse MBOT can compute tree translations that cannot be computed by any SFSG, although the class of tree translations computable by MBOT is closed under composition.\",\"PeriodicalId\":42512,\"journal\":{\"name\":\"Acta Cybernetica\",\"volume\":\"10 1\",\"pages\":\"235-246\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2013-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Cybernetica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14232/actacyb.23.1.2017.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cybernetica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14232/actacyb.23.1.2017.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 3

摘要

研究了同步森林(树序)替换语法(SFSG)在多自下而上树换能器(MBOT)中的表达能力。结果表明,SFSG与逆MBOT组合物具有完全相同的表达能力。该结果用于推导SFSG的复杂度结果,以及MBOT与逆MBOT的组合可以计算任何SFSG无法计算的树平移,尽管MBOT可计算的树平移类在组合下是封闭的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronous Forest Substitution Grammars
The expressive power of synchronous forest (tree-sequence) substitution grammars (SFSG) is studied in relation to multi bottom-up tree transducers (MBOT). It is proved that SFSG have exactly the same expressive power as compositions of an inverse MBOT with an MBOT. This result is used to derive complexity results for SFSG and the fact that compositions of an MBOT with an inverse MBOT can compute tree translations that cannot be computed by any SFSG, although the class of tree translations computable by MBOT is closed under composition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Cybernetica
Acta Cybernetica COMPUTER SCIENCE, CYBERNETICS-
CiteScore
1.10
自引率
0.00%
发文量
17
期刊介绍: Acta Cybernetica publishes only original papers in the field of Computer Science. Manuscripts must be written in good English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信