{"title":"几乎所有的Cayley映射都是正则表示","authors":"Dario Sterzi, Pablo Spiga","doi":"10.26493/1855-3974.3071.37e","DOIUrl":null,"url":null,"abstract":"Cayley maps are combinatorial structures built upon Cayley graphs on a group. As such the original group embeds in their group of automorphisms, and one can ask in which situation the two coincide (one then calls the Cayley map a mapical regular representation or MRR) and with what probability. The first question was answered by Jajcay. In this paper we tackle the probabilistic version, and prove that as groups get larger the proportion of MRRs among all Cayley Maps approaches 1.","PeriodicalId":49239,"journal":{"name":"Ars Mathematica Contemporanea","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost all Cayley maps are mapical regular representations\",\"authors\":\"Dario Sterzi, Pablo Spiga\",\"doi\":\"10.26493/1855-3974.3071.37e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cayley maps are combinatorial structures built upon Cayley graphs on a group. As such the original group embeds in their group of automorphisms, and one can ask in which situation the two coincide (one then calls the Cayley map a mapical regular representation or MRR) and with what probability. The first question was answered by Jajcay. In this paper we tackle the probabilistic version, and prove that as groups get larger the proportion of MRRs among all Cayley Maps approaches 1.\",\"PeriodicalId\":49239,\"journal\":{\"name\":\"Ars Mathematica Contemporanea\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Mathematica Contemporanea\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.3071.37e\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Mathematica Contemporanea","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.26493/1855-3974.3071.37e","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Almost all Cayley maps are mapical regular representations
Cayley maps are combinatorial structures built upon Cayley graphs on a group. As such the original group embeds in their group of automorphisms, and one can ask in which situation the two coincide (one then calls the Cayley map a mapical regular representation or MRR) and with what probability. The first question was answered by Jajcay. In this paper we tackle the probabilistic version, and prove that as groups get larger the proportion of MRRs among all Cayley Maps approaches 1.
期刊介绍:
Ars mathematica contemporanea will publish high-quality articles in contemporary mathematics that arise from the discrete and concrete mathematics paradigm. It will favor themes that combine at least two different fields of mathematics. In particular, we welcome papers intersecting discrete mathematics with other branches of mathematics, such as algebra, geometry, topology, theoretical computer science, and combinatorics. The name of the journal was chosen carefully. Symmetry is certainly a theme that is quite welcome to the journal, as it is through symmetry that mathematics comes closest to art.