{"title":"自体荧光技术在药用植物分析中的应用","authors":"V. V. Roshchina, A. Kuchin, V. Yashin","doi":"10.1155/2017/7159609","DOIUrl":null,"url":null,"abstract":"Autofluorescence of secondary compounds contained in plant secretory cells may be applied to the analysis of medicinal plants for pharmacy. Emission and prevailing fluorescent pharmaceuticals have been estimated in several models of species such as Salvia officinalis, Berberis vulgaris, Humulus lupulus, and Matricaria chamomilla, by luminescence microscopy, microspectrofluorimetry, and confocal microscopy.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"24 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Application of Autofluorescence for Analysis of Medicinal Plants\",\"authors\":\"V. V. Roshchina, A. Kuchin, V. Yashin\",\"doi\":\"10.1155/2017/7159609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autofluorescence of secondary compounds contained in plant secretory cells may be applied to the analysis of medicinal plants for pharmacy. Emission and prevailing fluorescent pharmaceuticals have been estimated in several models of species such as Salvia officinalis, Berberis vulgaris, Humulus lupulus, and Matricaria chamomilla, by luminescence microscopy, microspectrofluorimetry, and confocal microscopy.\",\"PeriodicalId\":14329,\"journal\":{\"name\":\"International Journal of Spectroscopy\",\"volume\":\"24 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2017/7159609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/7159609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Autofluorescence for Analysis of Medicinal Plants
Autofluorescence of secondary compounds contained in plant secretory cells may be applied to the analysis of medicinal plants for pharmacy. Emission and prevailing fluorescent pharmaceuticals have been estimated in several models of species such as Salvia officinalis, Berberis vulgaris, Humulus lupulus, and Matricaria chamomilla, by luminescence microscopy, microspectrofluorimetry, and confocal microscopy.