{"title":"电子和声子如何促进材料系统中的传热","authors":"","doi":"10.32907/ro-134-3941967013","DOIUrl":null,"url":null,"abstract":"NANOSCALE ELECTRONICS The increasing complexity and demands of modern electronics have resulted in a progressive reduction in the size of the transistors, as smaller transistors have higher processing speed, lower energy consumption, and they can be packed in larger numbers within smaller areas. A parallel reduction in interconnect sizes has however been far more difficult to achieve. As the wires are made thinner, their electrical conductivity decreases, and energy is dissipated in the form of heat, which can limit the performance, reliability, and efficiency of an integrated circuit. Improving the thermal properties of interconnects is therefore one of the central challenges in integrated electronics and for enabling the development of future alternative computing approaches based on nanotechnology, including spintronics (taking advantage of the natural magnetism of electrons, as well as their charge, to produce faster computers) and neuromorphic computing (a computing approach inspired by the structure and function of the human brain).","PeriodicalId":74685,"journal":{"name":"Research outreach : the outreach quarterly connecting science with society","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How electrons and phonons promote heat transfer in material systems\",\"authors\":\"\",\"doi\":\"10.32907/ro-134-3941967013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NANOSCALE ELECTRONICS The increasing complexity and demands of modern electronics have resulted in a progressive reduction in the size of the transistors, as smaller transistors have higher processing speed, lower energy consumption, and they can be packed in larger numbers within smaller areas. A parallel reduction in interconnect sizes has however been far more difficult to achieve. As the wires are made thinner, their electrical conductivity decreases, and energy is dissipated in the form of heat, which can limit the performance, reliability, and efficiency of an integrated circuit. Improving the thermal properties of interconnects is therefore one of the central challenges in integrated electronics and for enabling the development of future alternative computing approaches based on nanotechnology, including spintronics (taking advantage of the natural magnetism of electrons, as well as their charge, to produce faster computers) and neuromorphic computing (a computing approach inspired by the structure and function of the human brain).\",\"PeriodicalId\":74685,\"journal\":{\"name\":\"Research outreach : the outreach quarterly connecting science with society\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research outreach : the outreach quarterly connecting science with society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32907/ro-134-3941967013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research outreach : the outreach quarterly connecting science with society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32907/ro-134-3941967013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How electrons and phonons promote heat transfer in material systems
NANOSCALE ELECTRONICS The increasing complexity and demands of modern electronics have resulted in a progressive reduction in the size of the transistors, as smaller transistors have higher processing speed, lower energy consumption, and they can be packed in larger numbers within smaller areas. A parallel reduction in interconnect sizes has however been far more difficult to achieve. As the wires are made thinner, their electrical conductivity decreases, and energy is dissipated in the form of heat, which can limit the performance, reliability, and efficiency of an integrated circuit. Improving the thermal properties of interconnects is therefore one of the central challenges in integrated electronics and for enabling the development of future alternative computing approaches based on nanotechnology, including spintronics (taking advantage of the natural magnetism of electrons, as well as their charge, to produce faster computers) and neuromorphic computing (a computing approach inspired by the structure and function of the human brain).