Yifan Xu, Hadi Tavakkoli, Jingting Xu, Yi-Kuen Lee
{"title":"基于gm/ID理论优化的低漂移扩展门场效应晶体管(EGFET)用于冬虫夏草DNA检测","authors":"Yifan Xu, Hadi Tavakkoli, Jingting Xu, Yi-Kuen Lee","doi":"10.1109/NEMS50311.2020.9265621","DOIUrl":null,"url":null,"abstract":"An extended-gate field effect transistor (EGFET) integrated with a differential MOSFET amplifier and an open-source Arduino Yun MCU system was realized for detection of Cordyceps Sinensis DNA molecules. A gold microelectrode chip coated with a single-stranded DNA probe, as the extended gate was fabricated by MEMS fabrication processes. The differential MOSFET amplifier and additional coating of alkyl-thiol reduced the drifting by one order of magnitude. Moreover, generalized gm/ID theory was used to study the optimized working regime of the EGFET sensor. The highest electric-electrochemical sensitivity could be achieved in the Moderate Inversion (MI) regime. The sensitivity and limit of detection (LOD) of the EGFET sensor were obtained to be 13.85mV/dec and 10nM, respectively. This low-cost low-drift EGFET sensor system is promising for Internet of Living Things in the near future.","PeriodicalId":6787,"journal":{"name":"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)","volume":"23 1","pages":"398-401"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low-drift Extended-Gate Field Effect Transistor (EGFET) with Differential Amplifier for Cordyceps Sinensis DNA Detection Optimized by gm/ID Theory\",\"authors\":\"Yifan Xu, Hadi Tavakkoli, Jingting Xu, Yi-Kuen Lee\",\"doi\":\"10.1109/NEMS50311.2020.9265621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An extended-gate field effect transistor (EGFET) integrated with a differential MOSFET amplifier and an open-source Arduino Yun MCU system was realized for detection of Cordyceps Sinensis DNA molecules. A gold microelectrode chip coated with a single-stranded DNA probe, as the extended gate was fabricated by MEMS fabrication processes. The differential MOSFET amplifier and additional coating of alkyl-thiol reduced the drifting by one order of magnitude. Moreover, generalized gm/ID theory was used to study the optimized working regime of the EGFET sensor. The highest electric-electrochemical sensitivity could be achieved in the Moderate Inversion (MI) regime. The sensitivity and limit of detection (LOD) of the EGFET sensor were obtained to be 13.85mV/dec and 10nM, respectively. This low-cost low-drift EGFET sensor system is promising for Internet of Living Things in the near future.\",\"PeriodicalId\":6787,\"journal\":{\"name\":\"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)\",\"volume\":\"23 1\",\"pages\":\"398-401\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS50311.2020.9265621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS50311.2020.9265621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Low-drift Extended-Gate Field Effect Transistor (EGFET) with Differential Amplifier for Cordyceps Sinensis DNA Detection Optimized by gm/ID Theory
An extended-gate field effect transistor (EGFET) integrated with a differential MOSFET amplifier and an open-source Arduino Yun MCU system was realized for detection of Cordyceps Sinensis DNA molecules. A gold microelectrode chip coated with a single-stranded DNA probe, as the extended gate was fabricated by MEMS fabrication processes. The differential MOSFET amplifier and additional coating of alkyl-thiol reduced the drifting by one order of magnitude. Moreover, generalized gm/ID theory was used to study the optimized working regime of the EGFET sensor. The highest electric-electrochemical sensitivity could be achieved in the Moderate Inversion (MI) regime. The sensitivity and limit of detection (LOD) of the EGFET sensor were obtained to be 13.85mV/dec and 10nM, respectively. This low-cost low-drift EGFET sensor system is promising for Internet of Living Things in the near future.