实现电化学爆炸工艺模式时高压放电脉冲装置的控制

A. Vovchenko, L. Demydenko, S. Kozyrev
{"title":"实现电化学爆炸工艺模式时高压放电脉冲装置的控制","authors":"A. Vovchenko, L. Demydenko, S. Kozyrev","doi":"10.15587/1729-4061.2020.198371","DOIUrl":null,"url":null,"abstract":"Studying the high-voltage electrochemical explosion as a control object has established a significant impact exerted by the modes of controlled energy input into a discharge channel on the efficiency of exothermal energy conversion. Dependence has been derived of the specific energy efficiency of the release of chemical energy by an exothermic mixture on the distribution of the total introduced electrical energy among successive discharge pulses. This has made it possible, based on the rules proposed here, to determine the initial conditions for the control algorithm of a discharge-pulse installation, which implements the high-voltage electrochemical explosion technological modes, providing maximum effectiveness of exothermal transformations. It has been shown that the considerable stochasticity of processes during exothermal transformations under a mode of explosive combustion does not make it possible to use control systems that regulate only the initial conditions for an electrochemical explosion. Such systems do not ensure the preset discharge modes at each implementation. The need for ongoing control over the process of exothermal transformations has been substantiated, in order to prevent the reduction of pressure in a discharge channel below the allowable value that maintains the exothermic reaction of explosive combustion. The performed correlation analysis of the relationship between the values of current pressure in a discharge channel and the discharge electrical characteristics has revealed that there is a dense enough information interrelation between them. Therefore, it has been proposed to use, as the information signals that indirectly determine the pressure in a discharge channel, the operationally defined electrical characteristics of a discharge. An algorithm has been built and a system has been developed to control a high-voltage discharge-pulse installation that implements a high-voltage electrochemical explosion. Control over the mode of energy input in the process of explosive transformation makes it possible to avoid the extinction of the exothermal reaction at an accidental, due to the stochasticity of the process, reduction in pressure to the maximum allowable value in the period between the discharge pulses. Due to this, the unproductive losses of an exothermic mixture are eliminated, the losses of chemical and electrical energy are reduced, and the amount of total energy released is increased, without increasing the introduced electric energy, at each implementation of a high-voltage electrochemical explosion","PeriodicalId":18255,"journal":{"name":"MatSciRN: Process & Device Modeling (Topic)","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Control of a High-Voltage Discharge-Pulse Installation When Implementing Technological Modes of an Electrochemical Explosion\",\"authors\":\"A. Vovchenko, L. Demydenko, S. Kozyrev\",\"doi\":\"10.15587/1729-4061.2020.198371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studying the high-voltage electrochemical explosion as a control object has established a significant impact exerted by the modes of controlled energy input into a discharge channel on the efficiency of exothermal energy conversion. Dependence has been derived of the specific energy efficiency of the release of chemical energy by an exothermic mixture on the distribution of the total introduced electrical energy among successive discharge pulses. This has made it possible, based on the rules proposed here, to determine the initial conditions for the control algorithm of a discharge-pulse installation, which implements the high-voltage electrochemical explosion technological modes, providing maximum effectiveness of exothermal transformations. It has been shown that the considerable stochasticity of processes during exothermal transformations under a mode of explosive combustion does not make it possible to use control systems that regulate only the initial conditions for an electrochemical explosion. Such systems do not ensure the preset discharge modes at each implementation. The need for ongoing control over the process of exothermal transformations has been substantiated, in order to prevent the reduction of pressure in a discharge channel below the allowable value that maintains the exothermic reaction of explosive combustion. The performed correlation analysis of the relationship between the values of current pressure in a discharge channel and the discharge electrical characteristics has revealed that there is a dense enough information interrelation between them. Therefore, it has been proposed to use, as the information signals that indirectly determine the pressure in a discharge channel, the operationally defined electrical characteristics of a discharge. An algorithm has been built and a system has been developed to control a high-voltage discharge-pulse installation that implements a high-voltage electrochemical explosion. Control over the mode of energy input in the process of explosive transformation makes it possible to avoid the extinction of the exothermal reaction at an accidental, due to the stochasticity of the process, reduction in pressure to the maximum allowable value in the period between the discharge pulses. Due to this, the unproductive losses of an exothermic mixture are eliminated, the losses of chemical and electrical energy are reduced, and the amount of total energy released is increased, without increasing the introduced electric energy, at each implementation of a high-voltage electrochemical explosion\",\"PeriodicalId\":18255,\"journal\":{\"name\":\"MatSciRN: Process & Device Modeling (Topic)\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MatSciRN: Process & Device Modeling (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15587/1729-4061.2020.198371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Process & Device Modeling (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15587/1729-4061.2020.198371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

将高压电化学爆炸作为控制对象进行研究,确定了放电通道中可控能量输入方式对放热能量转换效率的重要影响。导出了放热混合物释放化学能的比能量效率依赖于连续放电脉冲中引入的总电能的分布。这使得根据本文提出的规则确定放电脉冲装置控制算法的初始条件成为可能,该装置实现了高压电化学爆炸技术模式,提供了最大的放热转换效率。已经表明,在爆炸燃烧模式下放热转化过程的相当大的随机性,不可能使用控制系统只调节电化学爆炸的初始条件。这样的系统不能保证每次执行时预设的放电模式。对放热转化过程进行持续控制的必要性已经得到证实,以防止排放通道中的压力降低到维持爆炸性燃烧的放热反应的允许值以下。对放电通道内电流压力值与放电电特性之间的关系进行了相关分析,发现两者之间存在着足够紧密的信息关联。因此,有人建议使用放电的操作定义的电特性作为间接确定放电通道中的压力的信息信号。建立了一种控制高压放电脉冲装置实现高压电化学爆炸的算法和系统。对炸药转化过程中能量输入方式的控制,可以避免放热反应因过程的随机性而在两次放电脉冲之间的间隔时间内,因压力降至最大允许值而意外终止。因此,在每次实施高压电化学爆炸时,消除了放热混合物的非生产损失,减少了化学能和电能的损失,并且在不增加引入电能的情况下增加了释放的总能量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of a High-Voltage Discharge-Pulse Installation When Implementing Technological Modes of an Electrochemical Explosion
Studying the high-voltage electrochemical explosion as a control object has established a significant impact exerted by the modes of controlled energy input into a discharge channel on the efficiency of exothermal energy conversion. Dependence has been derived of the specific energy efficiency of the release of chemical energy by an exothermic mixture on the distribution of the total introduced electrical energy among successive discharge pulses. This has made it possible, based on the rules proposed here, to determine the initial conditions for the control algorithm of a discharge-pulse installation, which implements the high-voltage electrochemical explosion technological modes, providing maximum effectiveness of exothermal transformations. It has been shown that the considerable stochasticity of processes during exothermal transformations under a mode of explosive combustion does not make it possible to use control systems that regulate only the initial conditions for an electrochemical explosion. Such systems do not ensure the preset discharge modes at each implementation. The need for ongoing control over the process of exothermal transformations has been substantiated, in order to prevent the reduction of pressure in a discharge channel below the allowable value that maintains the exothermic reaction of explosive combustion. The performed correlation analysis of the relationship between the values of current pressure in a discharge channel and the discharge electrical characteristics has revealed that there is a dense enough information interrelation between them. Therefore, it has been proposed to use, as the information signals that indirectly determine the pressure in a discharge channel, the operationally defined electrical characteristics of a discharge. An algorithm has been built and a system has been developed to control a high-voltage discharge-pulse installation that implements a high-voltage electrochemical explosion. Control over the mode of energy input in the process of explosive transformation makes it possible to avoid the extinction of the exothermal reaction at an accidental, due to the stochasticity of the process, reduction in pressure to the maximum allowable value in the period between the discharge pulses. Due to this, the unproductive losses of an exothermic mixture are eliminated, the losses of chemical and electrical energy are reduced, and the amount of total energy released is increased, without increasing the introduced electric energy, at each implementation of a high-voltage electrochemical explosion
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信