科学机器学习(1/2)

Q1 Mathematics
Peter Benner, Axel Klawonn, Martin Stoll
{"title":"科学机器学习(1/2)","authors":"Peter Benner, Axel Klawonn, Martin Stoll","doi":"10.1002/gamm.202100005","DOIUrl":null,"url":null,"abstract":"Scientific Machine Learning is a rapidly evolving field of research that combines and further develops techniques of scientific computing and machine learning. Special emphasis is given to the scientific (physical, chemical, biological, etc.) interpretability of models learned from data and their usefulness for robust predictions. On the other hand, this young field also investigates the utilization of Machine Learning methods for improving numerical algorithms in Scientific Computing. The name Scientific Machine Learning has been coined at a Basic Research Needs Workshop of the US Department of Energy (DOE) in January, 2018. It resulted in a report [2] published in February, 2019; see also [1] for a short brochure on this topic. The present special issue of the GAMM Mitteilungen, which is the first of a two-part series, contains contributions on the topic of Scientific Machine Learning in the context of complex applications across the sciences and engineering. Research in this new exciting field needs to address challenges such as complex physics, uncertain parameters, and possibly limited data through the development of new methods that combine algorithms from computational science and engineering and from numerical analysis with state of the art techniques from machine learning. At the GAMM Annual Meeting 2019, the activity group Computational and Mathematical Methods in Data Science (CoMinDS) has been established. Meanwhile, it has become a meeting place for researchers interested in all aspects of data science. All three editors of this special issue are founding members of this activity group. Because of the rapid development both in the theoretical foundations and the applicability of Scientific Machine Learning techniques, it is time to highlight developments within the field in the hope that it will become an essential domain within the GAMM and topical issues like this will have a frequent occurrence within this journal. We are happy that eight teams of authors have accepted our invitation to report on recent research highlights in Scientific Machine Learning, and to point out the relevant literature as well as software. The four papers in this first part of the special issue are: • Stoll, Benner: Machine Learning for Material Characterization with an Application for Predicting Mechanical Properties. This work explores the use of machine learning techniques for material property prediction. Given the abundance of data available in industrial applications, machine learning methods can help finding patterns in the data and the authors focus on the case of the small punch test and tensile data for illustration purposes. • Beck, Kurz: A Perspective on Machine Modelling Learning Methods in Turbulence. Turbulence modelling remains a humongous challenge in the simulation and analysis of complex flows. The authors review the use of data-driven techniques to open up new ways for studying turbulence and focus on the challenges and opportunities that machine learning brings to this field. • Heinlein, Klawonn, Lanser, Weber: Combining Machine Learning and Domain Decomposition Methods for the Solution of Partial Differential Equations – A Review. Domain decomposition (DD) has been a workhorse of solving complex simulation tasks. The authors review the combination of machine learning approaches with state-of-the-art DD-schemes. Their focus is on the use of ML techniques to improve the computational effort of adaptive domain decomposition schemes and the use of novel ML methods for the discretization and solution of subdomain problems. • Budd, van Gennip, Latz: Classification and image processing with a semi-discrete scheme for fidelity forced Allen–Cahn on graphs. Learning based on graphs provides exciting possibilities for discovering and using additional structure in data. In this work, the authors illustrate the use of a PDE-based learning technique relying on the graph Allen-Cahn equation for the segmentation of images. The authors illustrate that computational and mathematical advances can lead to efficiency and accuracy gains. Peter Benner1,2 Axel Klawonn3,4 Martin Stoll5","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/gamm.202100005","citationCount":"2","resultStr":"{\"title\":\"Topical Issue Scientific Machine Learning (1/2)\",\"authors\":\"Peter Benner, Axel Klawonn, Martin Stoll\",\"doi\":\"10.1002/gamm.202100005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific Machine Learning is a rapidly evolving field of research that combines and further develops techniques of scientific computing and machine learning. Special emphasis is given to the scientific (physical, chemical, biological, etc.) interpretability of models learned from data and their usefulness for robust predictions. On the other hand, this young field also investigates the utilization of Machine Learning methods for improving numerical algorithms in Scientific Computing. The name Scientific Machine Learning has been coined at a Basic Research Needs Workshop of the US Department of Energy (DOE) in January, 2018. It resulted in a report [2] published in February, 2019; see also [1] for a short brochure on this topic. The present special issue of the GAMM Mitteilungen, which is the first of a two-part series, contains contributions on the topic of Scientific Machine Learning in the context of complex applications across the sciences and engineering. Research in this new exciting field needs to address challenges such as complex physics, uncertain parameters, and possibly limited data through the development of new methods that combine algorithms from computational science and engineering and from numerical analysis with state of the art techniques from machine learning. At the GAMM Annual Meeting 2019, the activity group Computational and Mathematical Methods in Data Science (CoMinDS) has been established. Meanwhile, it has become a meeting place for researchers interested in all aspects of data science. All three editors of this special issue are founding members of this activity group. Because of the rapid development both in the theoretical foundations and the applicability of Scientific Machine Learning techniques, it is time to highlight developments within the field in the hope that it will become an essential domain within the GAMM and topical issues like this will have a frequent occurrence within this journal. We are happy that eight teams of authors have accepted our invitation to report on recent research highlights in Scientific Machine Learning, and to point out the relevant literature as well as software. The four papers in this first part of the special issue are: • Stoll, Benner: Machine Learning for Material Characterization with an Application for Predicting Mechanical Properties. This work explores the use of machine learning techniques for material property prediction. Given the abundance of data available in industrial applications, machine learning methods can help finding patterns in the data and the authors focus on the case of the small punch test and tensile data for illustration purposes. • Beck, Kurz: A Perspective on Machine Modelling Learning Methods in Turbulence. Turbulence modelling remains a humongous challenge in the simulation and analysis of complex flows. The authors review the use of data-driven techniques to open up new ways for studying turbulence and focus on the challenges and opportunities that machine learning brings to this field. • Heinlein, Klawonn, Lanser, Weber: Combining Machine Learning and Domain Decomposition Methods for the Solution of Partial Differential Equations – A Review. Domain decomposition (DD) has been a workhorse of solving complex simulation tasks. The authors review the combination of machine learning approaches with state-of-the-art DD-schemes. Their focus is on the use of ML techniques to improve the computational effort of adaptive domain decomposition schemes and the use of novel ML methods for the discretization and solution of subdomain problems. • Budd, van Gennip, Latz: Classification and image processing with a semi-discrete scheme for fidelity forced Allen–Cahn on graphs. Learning based on graphs provides exciting possibilities for discovering and using additional structure in data. In this work, the authors illustrate the use of a PDE-based learning technique relying on the graph Allen-Cahn equation for the segmentation of images. The authors illustrate that computational and mathematical advances can lead to efficiency and accuracy gains. Peter Benner1,2 Axel Klawonn3,4 Martin Stoll5\",\"PeriodicalId\":53634,\"journal\":{\"name\":\"GAMM Mitteilungen\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/gamm.202100005\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GAMM Mitteilungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/ftr/10.1002/gamm.202100005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/ftr/10.1002/gamm.202100005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topical Issue Scientific Machine Learning (1/2)
Scientific Machine Learning is a rapidly evolving field of research that combines and further develops techniques of scientific computing and machine learning. Special emphasis is given to the scientific (physical, chemical, biological, etc.) interpretability of models learned from data and their usefulness for robust predictions. On the other hand, this young field also investigates the utilization of Machine Learning methods for improving numerical algorithms in Scientific Computing. The name Scientific Machine Learning has been coined at a Basic Research Needs Workshop of the US Department of Energy (DOE) in January, 2018. It resulted in a report [2] published in February, 2019; see also [1] for a short brochure on this topic. The present special issue of the GAMM Mitteilungen, which is the first of a two-part series, contains contributions on the topic of Scientific Machine Learning in the context of complex applications across the sciences and engineering. Research in this new exciting field needs to address challenges such as complex physics, uncertain parameters, and possibly limited data through the development of new methods that combine algorithms from computational science and engineering and from numerical analysis with state of the art techniques from machine learning. At the GAMM Annual Meeting 2019, the activity group Computational and Mathematical Methods in Data Science (CoMinDS) has been established. Meanwhile, it has become a meeting place for researchers interested in all aspects of data science. All three editors of this special issue are founding members of this activity group. Because of the rapid development both in the theoretical foundations and the applicability of Scientific Machine Learning techniques, it is time to highlight developments within the field in the hope that it will become an essential domain within the GAMM and topical issues like this will have a frequent occurrence within this journal. We are happy that eight teams of authors have accepted our invitation to report on recent research highlights in Scientific Machine Learning, and to point out the relevant literature as well as software. The four papers in this first part of the special issue are: • Stoll, Benner: Machine Learning for Material Characterization with an Application for Predicting Mechanical Properties. This work explores the use of machine learning techniques for material property prediction. Given the abundance of data available in industrial applications, machine learning methods can help finding patterns in the data and the authors focus on the case of the small punch test and tensile data for illustration purposes. • Beck, Kurz: A Perspective on Machine Modelling Learning Methods in Turbulence. Turbulence modelling remains a humongous challenge in the simulation and analysis of complex flows. The authors review the use of data-driven techniques to open up new ways for studying turbulence and focus on the challenges and opportunities that machine learning brings to this field. • Heinlein, Klawonn, Lanser, Weber: Combining Machine Learning and Domain Decomposition Methods for the Solution of Partial Differential Equations – A Review. Domain decomposition (DD) has been a workhorse of solving complex simulation tasks. The authors review the combination of machine learning approaches with state-of-the-art DD-schemes. Their focus is on the use of ML techniques to improve the computational effort of adaptive domain decomposition schemes and the use of novel ML methods for the discretization and solution of subdomain problems. • Budd, van Gennip, Latz: Classification and image processing with a semi-discrete scheme for fidelity forced Allen–Cahn on graphs. Learning based on graphs provides exciting possibilities for discovering and using additional structure in data. In this work, the authors illustrate the use of a PDE-based learning technique relying on the graph Allen-Cahn equation for the segmentation of images. The authors illustrate that computational and mathematical advances can lead to efficiency and accuracy gains. Peter Benner1,2 Axel Klawonn3,4 Martin Stoll5
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信