栓系脂肪:脂滴接触部位的栓系

Contact Pub Date : 2020-03-01 DOI:10.1177/2515256420908142
Maria Bohnert
{"title":"栓系脂肪:脂滴接触部位的栓系","authors":"Maria Bohnert","doi":"10.1177/2515256420908142","DOIUrl":null,"url":null,"abstract":"Lipid droplets (LDs) are central hubs in cellular lipid handling. They serve as lipid storage organelles and are involved in neutral lipid biosynthesis and breakdown as well as in the production of phospholipids and sterols. For communication with other organelles, LDs are heavily engaged in contact sites. The molecular basis of these structures is formed by proteins or protein complexes termed tethers, which attach partner organelles to the surface of LDs. Here, we describe the structural and functional characteristics of recently identified LD tethers. Intriguingly, these LD tethers have additional features, such as the structural capacity to form tri-organellar contacts, domains specialized for interorganellar bulk lipid transfer, and connections to specific lipid metabolism enzymes, which might collectively contribute to the key role of LDs in cellular lipid flux.","PeriodicalId":87951,"journal":{"name":"Contact","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Tethering Fat: Tethers in Lipid Droplet Contact Sites\",\"authors\":\"Maria Bohnert\",\"doi\":\"10.1177/2515256420908142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lipid droplets (LDs) are central hubs in cellular lipid handling. They serve as lipid storage organelles and are involved in neutral lipid biosynthesis and breakdown as well as in the production of phospholipids and sterols. For communication with other organelles, LDs are heavily engaged in contact sites. The molecular basis of these structures is formed by proteins or protein complexes termed tethers, which attach partner organelles to the surface of LDs. Here, we describe the structural and functional characteristics of recently identified LD tethers. Intriguingly, these LD tethers have additional features, such as the structural capacity to form tri-organellar contacts, domains specialized for interorganellar bulk lipid transfer, and connections to specific lipid metabolism enzymes, which might collectively contribute to the key role of LDs in cellular lipid flux.\",\"PeriodicalId\":87951,\"journal\":{\"name\":\"Contact\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2515256420908142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contact","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2515256420908142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

脂滴(ld)是细胞脂质处理的中心枢纽。它们作为脂质储存细胞器,参与中性脂质的生物合成和分解,以及磷脂和甾醇的产生。为了与其他细胞器进行通信,ld大量参与接触位点。这些结构的分子基础是由蛋白质或称为系链的蛋白质复合物形成的,它们将伴侣细胞器附着在ld表面。在这里,我们描述了最近发现的LD系绳的结构和功能特征。有趣的是,这些LD系链还有其他特征,如形成三细胞器接触的结构能力,专门用于细胞器间大量脂质转移的结构域,以及与特定脂质代谢酶的连接,这些可能共同有助于LD在细胞脂质通量中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tethering Fat: Tethers in Lipid Droplet Contact Sites
Lipid droplets (LDs) are central hubs in cellular lipid handling. They serve as lipid storage organelles and are involved in neutral lipid biosynthesis and breakdown as well as in the production of phospholipids and sterols. For communication with other organelles, LDs are heavily engaged in contact sites. The molecular basis of these structures is formed by proteins or protein complexes termed tethers, which attach partner organelles to the surface of LDs. Here, we describe the structural and functional characteristics of recently identified LD tethers. Intriguingly, these LD tethers have additional features, such as the structural capacity to form tri-organellar contacts, domains specialized for interorganellar bulk lipid transfer, and connections to specific lipid metabolism enzymes, which might collectively contribute to the key role of LDs in cellular lipid flux.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信