{"title":"Cardava Banana (Musa acuminata x balbisiana)假茎纤维-二氧化硅增强复合材料的合成","authors":"Crijamaica l. Oceña, Chosel P. Lawagon","doi":"10.4028/p-66yc8h","DOIUrl":null,"url":null,"abstract":"Cardava banana pseudostem fibers (BPFs) are recently explored as a composite reinforcement. This is due to its improved thermal and mechanical stability effects for concrete applications. Silica, derived from sodium silicate and a modification additive, was explored as potential matrix in the self-healing applications. Herein, BPFs were prepared to produce BPF – silica composite (BPFSC) as concrete additive. The investigation focused on the interfacial adhesion of BPFs in the silica matrix to self-heal the concrete when subjected to cracks. The synthesized BPFSC has a sheet-like and a rough surface morphology based on the SEM micrographs. BPFs (100 mesh) were used to reinforce silica, and the synthesized composite (BPFSC) was mixed in a cementitious matrix (5% w/w) to test its potential self-healing properties. Results showed that the addition of the silica (SiO2) improved the mechanical properties of concrete in both the pristine condition and healed samples. Notably, the BPFSC showed better mechanical performance than SiO2 alone. This explained the good interfacial adhesion of BPF in the BPF – silica matrix. Hence, the prepared composite embedded in concrete showed significant healing potential concerning compressive and tensile strengths after damage, surpassing control specimens. Finally, a synthesis procedure was developed to prepare cardava banana pseudostem fiber – silica composite, showing a potential upcycling route of waste pseudostems for construction materials.","PeriodicalId":10603,"journal":{"name":"Construction Technologies and Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Cardava Banana (Musa acuminata x balbisiana) Pseudostem Fiber - Silica Reinforced Composite as Concrete Additive\",\"authors\":\"Crijamaica l. Oceña, Chosel P. Lawagon\",\"doi\":\"10.4028/p-66yc8h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardava banana pseudostem fibers (BPFs) are recently explored as a composite reinforcement. This is due to its improved thermal and mechanical stability effects for concrete applications. Silica, derived from sodium silicate and a modification additive, was explored as potential matrix in the self-healing applications. Herein, BPFs were prepared to produce BPF – silica composite (BPFSC) as concrete additive. The investigation focused on the interfacial adhesion of BPFs in the silica matrix to self-heal the concrete when subjected to cracks. The synthesized BPFSC has a sheet-like and a rough surface morphology based on the SEM micrographs. BPFs (100 mesh) were used to reinforce silica, and the synthesized composite (BPFSC) was mixed in a cementitious matrix (5% w/w) to test its potential self-healing properties. Results showed that the addition of the silica (SiO2) improved the mechanical properties of concrete in both the pristine condition and healed samples. Notably, the BPFSC showed better mechanical performance than SiO2 alone. This explained the good interfacial adhesion of BPF in the BPF – silica matrix. Hence, the prepared composite embedded in concrete showed significant healing potential concerning compressive and tensile strengths after damage, surpassing control specimens. Finally, a synthesis procedure was developed to prepare cardava banana pseudostem fiber – silica composite, showing a potential upcycling route of waste pseudostems for construction materials.\",\"PeriodicalId\":10603,\"journal\":{\"name\":\"Construction Technologies and Architecture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction Technologies and Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-66yc8h\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction Technologies and Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-66yc8h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of Cardava Banana (Musa acuminata x balbisiana) Pseudostem Fiber - Silica Reinforced Composite as Concrete Additive
Cardava banana pseudostem fibers (BPFs) are recently explored as a composite reinforcement. This is due to its improved thermal and mechanical stability effects for concrete applications. Silica, derived from sodium silicate and a modification additive, was explored as potential matrix in the self-healing applications. Herein, BPFs were prepared to produce BPF – silica composite (BPFSC) as concrete additive. The investigation focused on the interfacial adhesion of BPFs in the silica matrix to self-heal the concrete when subjected to cracks. The synthesized BPFSC has a sheet-like and a rough surface morphology based on the SEM micrographs. BPFs (100 mesh) were used to reinforce silica, and the synthesized composite (BPFSC) was mixed in a cementitious matrix (5% w/w) to test its potential self-healing properties. Results showed that the addition of the silica (SiO2) improved the mechanical properties of concrete in both the pristine condition and healed samples. Notably, the BPFSC showed better mechanical performance than SiO2 alone. This explained the good interfacial adhesion of BPF in the BPF – silica matrix. Hence, the prepared composite embedded in concrete showed significant healing potential concerning compressive and tensile strengths after damage, surpassing control specimens. Finally, a synthesis procedure was developed to prepare cardava banana pseudostem fiber – silica composite, showing a potential upcycling route of waste pseudostems for construction materials.