膨胀珍珠岩:从水中去除抗生素的潜力

IF 1 4区 环境科学与生态学 Q4 WATER RESOURCES
Bruna Martins Vicentin, Raquel Dalla Costa da Rocha
{"title":"膨胀珍珠岩:从水中去除抗生素的潜力","authors":"Bruna Martins Vicentin, Raquel Dalla Costa da Rocha","doi":"10.17159/wsa/2021.v47.i4.3817","DOIUrl":null,"url":null,"abstract":"This work aims to study the potential of expanded perlite (EP) for amoxicillin (AMX) removal in aqueous solution. For this purpose, chemical, morphological, and textural characteristics of the EP were evaluated, in addition to AMX removal by the adsorption process. The kinetic, isothermal, and thermodynamic parameters were also assessed. The EP presented an isoelectric point of 6.5 and a surface with hydroxyl bands, which favour the adsorption process. Air bubbles were sealed and randomly connected with each other, increasing the surface area relative to the adsorption sites. These non-porous or macro-porous sites demonstrate efficiency in the mechanisms of mass transfer. AMX removal was determined to be a pseudo-second-order process since the adsorption velocity was proportional to the square of the available adsorption sites and indicates heterogeneity in the surface interactions between the adsorbed molecules. Also, the interactions were considered multilayer for low concentrations and monolayer for high concentrations (Sips isotherm). The adsorption process was endothermic and utilised a physical adsorption mechanism. Considering that no modification treatment was applied to the EP, and due to its neutral isoelectric point, macropores, amorphous and dipole induction force (physical adsorption) characteristics, favourable affinity between EP and AMX was observed.","PeriodicalId":23623,"journal":{"name":"Water SA","volume":"10 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Expanded perlite: potential for removing antibiotics from water\",\"authors\":\"Bruna Martins Vicentin, Raquel Dalla Costa da Rocha\",\"doi\":\"10.17159/wsa/2021.v47.i4.3817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to study the potential of expanded perlite (EP) for amoxicillin (AMX) removal in aqueous solution. For this purpose, chemical, morphological, and textural characteristics of the EP were evaluated, in addition to AMX removal by the adsorption process. The kinetic, isothermal, and thermodynamic parameters were also assessed. The EP presented an isoelectric point of 6.5 and a surface with hydroxyl bands, which favour the adsorption process. Air bubbles were sealed and randomly connected with each other, increasing the surface area relative to the adsorption sites. These non-porous or macro-porous sites demonstrate efficiency in the mechanisms of mass transfer. AMX removal was determined to be a pseudo-second-order process since the adsorption velocity was proportional to the square of the available adsorption sites and indicates heterogeneity in the surface interactions between the adsorbed molecules. Also, the interactions were considered multilayer for low concentrations and monolayer for high concentrations (Sips isotherm). The adsorption process was endothermic and utilised a physical adsorption mechanism. Considering that no modification treatment was applied to the EP, and due to its neutral isoelectric point, macropores, amorphous and dipole induction force (physical adsorption) characteristics, favourable affinity between EP and AMX was observed.\",\"PeriodicalId\":23623,\"journal\":{\"name\":\"Water SA\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water SA\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.17159/wsa/2021.v47.i4.3817\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water SA","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.17159/wsa/2021.v47.i4.3817","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 1

摘要

本文旨在研究膨胀珍珠岩(EP)在水溶液中去除阿莫西林(AMX)的潜力。为此,除了通过吸附过程去除AMX外,还对EP的化学、形态和结构特性进行了评估。动力学、等温和热力学参数也进行了评估。EP的等电点为6.5,表面有羟基带,有利于吸附过程。气泡被密封并随机连接在一起,增加了相对于吸附位点的表面积。这些无孔或大孔部位在传质机制中表现出效率。由于吸附速度与可用吸附位点的平方成正比,并且表明被吸附分子之间表面相互作用的异质性,因此确定AMX的去除是一个伪二阶过程。此外,相互作用在低浓度时被认为是多层的,在高浓度时被认为是单层的(Sips等温线)。吸附过程为吸热吸附,采用物理吸附机理。考虑到未对EP进行改性处理,并且由于其中性等电点、大孔、无定形和偶极感应力(物理吸附)等特性,EP与AMX具有良好的亲和性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expanded perlite: potential for removing antibiotics from water
This work aims to study the potential of expanded perlite (EP) for amoxicillin (AMX) removal in aqueous solution. For this purpose, chemical, morphological, and textural characteristics of the EP were evaluated, in addition to AMX removal by the adsorption process. The kinetic, isothermal, and thermodynamic parameters were also assessed. The EP presented an isoelectric point of 6.5 and a surface with hydroxyl bands, which favour the adsorption process. Air bubbles were sealed and randomly connected with each other, increasing the surface area relative to the adsorption sites. These non-porous or macro-porous sites demonstrate efficiency in the mechanisms of mass transfer. AMX removal was determined to be a pseudo-second-order process since the adsorption velocity was proportional to the square of the available adsorption sites and indicates heterogeneity in the surface interactions between the adsorbed molecules. Also, the interactions were considered multilayer for low concentrations and monolayer for high concentrations (Sips isotherm). The adsorption process was endothermic and utilised a physical adsorption mechanism. Considering that no modification treatment was applied to the EP, and due to its neutral isoelectric point, macropores, amorphous and dipole induction force (physical adsorption) characteristics, favourable affinity between EP and AMX was observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water SA
Water SA 环境科学-水资源
CiteScore
2.80
自引率
6.70%
发文量
46
审稿时长
18-36 weeks
期刊介绍: WaterSA publishes refereed, original work in all branches of water science, technology and engineering. This includes water resources development; the hydrological cycle; surface hydrology; geohydrology and hydrometeorology; limnology; salinisation; treatment and management of municipal and industrial water and wastewater; treatment and disposal of sewage sludge; environmental pollution control; water quality and treatment; aquaculture in terms of its impact on the water resource; agricultural water science; etc. Water SA is the WRC’s accredited scientific journal which contains original research articles and review articles on all aspects of water science, technology, engineering and policy. Water SA has been in publication since 1975 and includes articles from both local and international authors. The journal is issued quarterly (4 editions per year).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信