{"title":"空气源热泵机组和空气-水热泵性能系数的评价","authors":"S. Tangwe, K. Kusakana","doi":"10.17159/2413-3051/2021/V32I1A7935","DOIUrl":null,"url":null,"abstract":"Air source heat pump (ASHP) water heaters are efficient devices for sanitary hot water heating. The coefficient of performance (COP) of the air to water heat pump (AWHP) is constantly lower than that of the corresponding ASHP unit. The study focused on determining the COP of both the ASHP unit and the AWHP. This was achieved by the implementation of both experimental and simulation methods, with the help of a data acquisition system and the REFPROP software. The system comprised of a 1.2 kW split type ASHP unit and a 150 L high pressure geyser. A power meter, flow meters, temperature sensors, pressure sensors, ambient temperature and relative humidity sensor were installed at precise locations on the split type AWHP. Controlled volumes of 150, 50 and 100 L were drawn off from the AWHP during the morning, afternoon and evening for a year. The average COP for the summer and winter, in terms of the input electrical and output thermal energies of the AWHP were 3.02 and 2.30. The COPs of the ASHP unit, in terms of the change in the enthalpies of the refrigerant at the inlet and the outlet of the condenser and the evaporator, were 3.52 and 2.65 respectively. The study showed that the difference between the COP of the ASHP unit and that of the AWHP could be ascribed to the electrical energy consumed by the fan and the water circulation pump during the vapour compression refrigeration cycles. The work provides an energy optimisation opportunity to the manufacturers of this technology, helping to enhance the efficiency and COP of ASHP water heaters.","PeriodicalId":15666,"journal":{"name":"Journal of Energy in Southern Africa","volume":"19 1","pages":"27-40"},"PeriodicalIF":0.6000,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of the coefficient of performance of an air source heat pump unit and an air to water heat pump\",\"authors\":\"S. Tangwe, K. Kusakana\",\"doi\":\"10.17159/2413-3051/2021/V32I1A7935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air source heat pump (ASHP) water heaters are efficient devices for sanitary hot water heating. The coefficient of performance (COP) of the air to water heat pump (AWHP) is constantly lower than that of the corresponding ASHP unit. The study focused on determining the COP of both the ASHP unit and the AWHP. This was achieved by the implementation of both experimental and simulation methods, with the help of a data acquisition system and the REFPROP software. The system comprised of a 1.2 kW split type ASHP unit and a 150 L high pressure geyser. A power meter, flow meters, temperature sensors, pressure sensors, ambient temperature and relative humidity sensor were installed at precise locations on the split type AWHP. Controlled volumes of 150, 50 and 100 L were drawn off from the AWHP during the morning, afternoon and evening for a year. The average COP for the summer and winter, in terms of the input electrical and output thermal energies of the AWHP were 3.02 and 2.30. The COPs of the ASHP unit, in terms of the change in the enthalpies of the refrigerant at the inlet and the outlet of the condenser and the evaporator, were 3.52 and 2.65 respectively. The study showed that the difference between the COP of the ASHP unit and that of the AWHP could be ascribed to the electrical energy consumed by the fan and the water circulation pump during the vapour compression refrigeration cycles. The work provides an energy optimisation opportunity to the manufacturers of this technology, helping to enhance the efficiency and COP of ASHP water heaters.\",\"PeriodicalId\":15666,\"journal\":{\"name\":\"Journal of Energy in Southern Africa\",\"volume\":\"19 1\",\"pages\":\"27-40\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy in Southern Africa\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.17159/2413-3051/2021/V32I1A7935\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy in Southern Africa","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17159/2413-3051/2021/V32I1A7935","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Evaluation of the coefficient of performance of an air source heat pump unit and an air to water heat pump
Air source heat pump (ASHP) water heaters are efficient devices for sanitary hot water heating. The coefficient of performance (COP) of the air to water heat pump (AWHP) is constantly lower than that of the corresponding ASHP unit. The study focused on determining the COP of both the ASHP unit and the AWHP. This was achieved by the implementation of both experimental and simulation methods, with the help of a data acquisition system and the REFPROP software. The system comprised of a 1.2 kW split type ASHP unit and a 150 L high pressure geyser. A power meter, flow meters, temperature sensors, pressure sensors, ambient temperature and relative humidity sensor were installed at precise locations on the split type AWHP. Controlled volumes of 150, 50 and 100 L were drawn off from the AWHP during the morning, afternoon and evening for a year. The average COP for the summer and winter, in terms of the input electrical and output thermal energies of the AWHP were 3.02 and 2.30. The COPs of the ASHP unit, in terms of the change in the enthalpies of the refrigerant at the inlet and the outlet of the condenser and the evaporator, were 3.52 and 2.65 respectively. The study showed that the difference between the COP of the ASHP unit and that of the AWHP could be ascribed to the electrical energy consumed by the fan and the water circulation pump during the vapour compression refrigeration cycles. The work provides an energy optimisation opportunity to the manufacturers of this technology, helping to enhance the efficiency and COP of ASHP water heaters.
期刊介绍:
The journal has a regional focus on southern Africa. Manuscripts that are accepted for consideration to publish in the journal must address energy issues in southern Africa or have a clear component relevant to southern Africa, including research that was set-up or designed in the region. The southern African region is considered to be constituted by the following fifteen (15) countries: Angola, Botswana, Democratic Republic of Congo, Lesotho, Malawi, Madagascar, Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, Tanzania, Zambia and Zimbabwe.
Within this broad field of energy research, topics of particular interest include energy efficiency, modelling, renewable energy, poverty, sustainable development, climate change mitigation, energy security, energy policy, energy governance, markets, technology and innovation.