K. Umar, Risal Rahman, R. Hidayat, P. S. Kurniawati, R. Marindha, G. D. Dahnil, Gerardus Putra Pancawisna, Danny Hidayat, A. Az-Zariat, F. Utama
{"title":"Mahakam油田多层无管井成功断水策略:JM-X案例研究","authors":"K. Umar, Risal Rahman, R. Hidayat, P. S. Kurniawati, R. Marindha, G. D. Dahnil, Gerardus Putra Pancawisna, Danny Hidayat, A. Az-Zariat, F. Utama","doi":"10.2118/205674-ms","DOIUrl":null,"url":null,"abstract":"\n The objective of this paper is to present the Mechanical Water Shut-Off (MWSO) strategy for multilayer reservoirs on tubingless well. With 10 open perforated reservoirs and no selectivity option, isolation on water producing reservoir will be the main challenge since production is commingled throughout the lifetime of well. Regular production tests performed through a Multiphase Flowmeter equipment on each offshore platform is a first indicator to monitor the evolution of water production in a well. JM-X well has been experiencing water breakthrough since one week after initial perforation and WGR keep increasing following gas production decline. The strategy was initiated by conducting a bottom hole monitoring survey to identify water sources. Production Logging Tool (PLT) was used to precisely monitor pressure, temperature, water holdup, and fluid rate along the wellbore for further water source and production allocation analysis. Once the water source reservoirs have been identified, MWSO operation was requested. There are several types of MWSO equipment that are commonly used in Offshore Mahakam field each of which has selective economic consideration based on the expected well reserve. Considering operation difficulties and cost, MWSO program was made then will be monitored during the operation time to ensure the operation runs safely and smoothly. MWSO strategy on well JM-X was proven to be able to reduce water production from 900 bpd to only 20 bpd with a significant gain of gas production from 3 MMscfd to 9.2 MMscfd and oil production from 200 bpd to 750 bpd.","PeriodicalId":11017,"journal":{"name":"Day 2 Wed, October 13, 2021","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Successful Water Shut Off Strategy for Multilayer Tubingless Wells at Mahakam Field: JM-X Case Study\",\"authors\":\"K. Umar, Risal Rahman, R. Hidayat, P. S. Kurniawati, R. Marindha, G. D. Dahnil, Gerardus Putra Pancawisna, Danny Hidayat, A. Az-Zariat, F. Utama\",\"doi\":\"10.2118/205674-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The objective of this paper is to present the Mechanical Water Shut-Off (MWSO) strategy for multilayer reservoirs on tubingless well. With 10 open perforated reservoirs and no selectivity option, isolation on water producing reservoir will be the main challenge since production is commingled throughout the lifetime of well. Regular production tests performed through a Multiphase Flowmeter equipment on each offshore platform is a first indicator to monitor the evolution of water production in a well. JM-X well has been experiencing water breakthrough since one week after initial perforation and WGR keep increasing following gas production decline. The strategy was initiated by conducting a bottom hole monitoring survey to identify water sources. Production Logging Tool (PLT) was used to precisely monitor pressure, temperature, water holdup, and fluid rate along the wellbore for further water source and production allocation analysis. Once the water source reservoirs have been identified, MWSO operation was requested. There are several types of MWSO equipment that are commonly used in Offshore Mahakam field each of which has selective economic consideration based on the expected well reserve. Considering operation difficulties and cost, MWSO program was made then will be monitored during the operation time to ensure the operation runs safely and smoothly. MWSO strategy on well JM-X was proven to be able to reduce water production from 900 bpd to only 20 bpd with a significant gain of gas production from 3 MMscfd to 9.2 MMscfd and oil production from 200 bpd to 750 bpd.\",\"PeriodicalId\":11017,\"journal\":{\"name\":\"Day 2 Wed, October 13, 2021\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, October 13, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/205674-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, October 13, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205674-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Successful Water Shut Off Strategy for Multilayer Tubingless Wells at Mahakam Field: JM-X Case Study
The objective of this paper is to present the Mechanical Water Shut-Off (MWSO) strategy for multilayer reservoirs on tubingless well. With 10 open perforated reservoirs and no selectivity option, isolation on water producing reservoir will be the main challenge since production is commingled throughout the lifetime of well. Regular production tests performed through a Multiphase Flowmeter equipment on each offshore platform is a first indicator to monitor the evolution of water production in a well. JM-X well has been experiencing water breakthrough since one week after initial perforation and WGR keep increasing following gas production decline. The strategy was initiated by conducting a bottom hole monitoring survey to identify water sources. Production Logging Tool (PLT) was used to precisely monitor pressure, temperature, water holdup, and fluid rate along the wellbore for further water source and production allocation analysis. Once the water source reservoirs have been identified, MWSO operation was requested. There are several types of MWSO equipment that are commonly used in Offshore Mahakam field each of which has selective economic consideration based on the expected well reserve. Considering operation difficulties and cost, MWSO program was made then will be monitored during the operation time to ensure the operation runs safely and smoothly. MWSO strategy on well JM-X was proven to be able to reduce water production from 900 bpd to only 20 bpd with a significant gain of gas production from 3 MMscfd to 9.2 MMscfd and oil production from 200 bpd to 750 bpd.