{"title":"基于上下文表示增强的像素级分割的可行驶农业道路区域检测","authors":"Yefeng Sun, Liang Gong, Wei Zhang, Bishu Gao, Yanming Li, Chengliang Liu","doi":"10.3390/agriculture13091736","DOIUrl":null,"url":null,"abstract":"Drivable area detection is crucial for the autonomous navigation of agricultural robots. However, semi-structured agricultural roads are generally not marked with lanes and their boundaries are ambiguous, which impedes the accurate segmentation of drivable areas and consequently paralyzes the robots. This paper proposes a deep learning network model for realizing high-resolution segmentation of agricultural roads by leveraging contextual representations to augment road objectness. The backbone adopts HRNet to extract high-resolution road features in parallel at multiple scales. To strengthen the relationship between pixels and corresponding object regions, we use object-contextual representations (OCR) to augment the feature representations of pixels. Finally, a differentiable binarization (DB) decision head is used to perform threshold-adaptive segmentation for road boundaries. To quantify the performance of our method, we used an agricultural semi-structured road dataset and conducted experiments. The experimental results show that the mIoU reaches 97.85%, and the Boundary IoU achieves 90.88%. Both the segmentation accuracy and the boundary quality outperform the existing methods, which shows the tailored segmentation networks with contextual representations are beneficial to improving the detection accuracy of the semi-structured drivable areas in agricultural scene.","PeriodicalId":48587,"journal":{"name":"Agriculture-Basel","volume":"11 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drivable Agricultural Road Region Detection Based on Pixel-Level Segmentation with Contextual Representation Augmentation\",\"authors\":\"Yefeng Sun, Liang Gong, Wei Zhang, Bishu Gao, Yanming Li, Chengliang Liu\",\"doi\":\"10.3390/agriculture13091736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drivable area detection is crucial for the autonomous navigation of agricultural robots. However, semi-structured agricultural roads are generally not marked with lanes and their boundaries are ambiguous, which impedes the accurate segmentation of drivable areas and consequently paralyzes the robots. This paper proposes a deep learning network model for realizing high-resolution segmentation of agricultural roads by leveraging contextual representations to augment road objectness. The backbone adopts HRNet to extract high-resolution road features in parallel at multiple scales. To strengthen the relationship between pixels and corresponding object regions, we use object-contextual representations (OCR) to augment the feature representations of pixels. Finally, a differentiable binarization (DB) decision head is used to perform threshold-adaptive segmentation for road boundaries. To quantify the performance of our method, we used an agricultural semi-structured road dataset and conducted experiments. The experimental results show that the mIoU reaches 97.85%, and the Boundary IoU achieves 90.88%. Both the segmentation accuracy and the boundary quality outperform the existing methods, which shows the tailored segmentation networks with contextual representations are beneficial to improving the detection accuracy of the semi-structured drivable areas in agricultural scene.\",\"PeriodicalId\":48587,\"journal\":{\"name\":\"Agriculture-Basel\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture-Basel\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/agriculture13091736\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agriculture13091736","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Drivable Agricultural Road Region Detection Based on Pixel-Level Segmentation with Contextual Representation Augmentation
Drivable area detection is crucial for the autonomous navigation of agricultural robots. However, semi-structured agricultural roads are generally not marked with lanes and their boundaries are ambiguous, which impedes the accurate segmentation of drivable areas and consequently paralyzes the robots. This paper proposes a deep learning network model for realizing high-resolution segmentation of agricultural roads by leveraging contextual representations to augment road objectness. The backbone adopts HRNet to extract high-resolution road features in parallel at multiple scales. To strengthen the relationship between pixels and corresponding object regions, we use object-contextual representations (OCR) to augment the feature representations of pixels. Finally, a differentiable binarization (DB) decision head is used to perform threshold-adaptive segmentation for road boundaries. To quantify the performance of our method, we used an agricultural semi-structured road dataset and conducted experiments. The experimental results show that the mIoU reaches 97.85%, and the Boundary IoU achieves 90.88%. Both the segmentation accuracy and the boundary quality outperform the existing methods, which shows the tailored segmentation networks with contextual representations are beneficial to improving the detection accuracy of the semi-structured drivable areas in agricultural scene.
期刊介绍:
Agriculture (ISSN 2077-0472) is an international and cross-disciplinary scholarly and scientific open access journal on the science of cultivating the soil, growing, harvesting crops, and raising livestock. We will aim to look at production, processing, marketing and use of foods, fibers, plants and animals. The journal Agriculturewill publish reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.