Duc Tho Do, Van Nam Luyen, Thi My Huyen Nguyen, Manh Hung Pham, V. Pham, T. N. L. Truong
{"title":"基于硅量子点的光学探针荧光检测Cr6+离子","authors":"Duc Tho Do, Van Nam Luyen, Thi My Huyen Nguyen, Manh Hung Pham, V. Pham, T. N. L. Truong","doi":"10.26459/hueunijns.v131i1b.6546","DOIUrl":null,"url":null,"abstract":"In this report, silicon quantum dots (SiQDs) with the NH2 functional group were synthesized with the hydrothermal method. The as-prepared SiQDs exhibit a strong fluorescence emission peak at 441 nm when excited at 355 nm and are effectively quenched upon adding Cr6+ ions. Hence, SiQDs were used as an optical probe to detect Cr6+ ions in solutions. The crystal structure of SiQDs was characterized by using X-ray diffraction (XRD). The Fourier-transform infrared spectroscopy (FT-IR) was used to determine the linker groups on the SiQDs surface. The fluorescence spectroscopic technique with an excitation wavelength of 355 nm was used to quantify the Cr6+ ion concentration in the solutions in the range of 0.1–1000 µM. Competition from common coexisting ions, such as K+, Na+, Al3+, Zn2+, and Pb2+, was ignorable. The test with actual samples showed good linearity for the Cr6+ concentration range of 0.1–50 µM.","PeriodicalId":13004,"journal":{"name":"Hue University Journal of Science: Natural Science","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silicon quantum-dots-based optical probe for fluorometric detection of Cr6+ ions\",\"authors\":\"Duc Tho Do, Van Nam Luyen, Thi My Huyen Nguyen, Manh Hung Pham, V. Pham, T. N. L. Truong\",\"doi\":\"10.26459/hueunijns.v131i1b.6546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this report, silicon quantum dots (SiQDs) with the NH2 functional group were synthesized with the hydrothermal method. The as-prepared SiQDs exhibit a strong fluorescence emission peak at 441 nm when excited at 355 nm and are effectively quenched upon adding Cr6+ ions. Hence, SiQDs were used as an optical probe to detect Cr6+ ions in solutions. The crystal structure of SiQDs was characterized by using X-ray diffraction (XRD). The Fourier-transform infrared spectroscopy (FT-IR) was used to determine the linker groups on the SiQDs surface. The fluorescence spectroscopic technique with an excitation wavelength of 355 nm was used to quantify the Cr6+ ion concentration in the solutions in the range of 0.1–1000 µM. Competition from common coexisting ions, such as K+, Na+, Al3+, Zn2+, and Pb2+, was ignorable. The test with actual samples showed good linearity for the Cr6+ concentration range of 0.1–50 µM.\",\"PeriodicalId\":13004,\"journal\":{\"name\":\"Hue University Journal of Science: Natural Science\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hue University Journal of Science: Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26459/hueunijns.v131i1b.6546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hue University Journal of Science: Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26459/hueunijns.v131i1b.6546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Silicon quantum-dots-based optical probe for fluorometric detection of Cr6+ ions
In this report, silicon quantum dots (SiQDs) with the NH2 functional group were synthesized with the hydrothermal method. The as-prepared SiQDs exhibit a strong fluorescence emission peak at 441 nm when excited at 355 nm and are effectively quenched upon adding Cr6+ ions. Hence, SiQDs were used as an optical probe to detect Cr6+ ions in solutions. The crystal structure of SiQDs was characterized by using X-ray diffraction (XRD). The Fourier-transform infrared spectroscopy (FT-IR) was used to determine the linker groups on the SiQDs surface. The fluorescence spectroscopic technique with an excitation wavelength of 355 nm was used to quantify the Cr6+ ion concentration in the solutions in the range of 0.1–1000 µM. Competition from common coexisting ions, such as K+, Na+, Al3+, Zn2+, and Pb2+, was ignorable. The test with actual samples showed good linearity for the Cr6+ concentration range of 0.1–50 µM.