{"title":"GaAs/AlAs盘形量子点中的激子量子拍","authors":"Thi Dieu Hien Le, Thi Ngoc Bao Le, Nhu Thao Dinh","doi":"10.26459/hueunijns.v132i1b.6909","DOIUrl":null,"url":null,"abstract":"Using the renormalized wavefunction approach, we examined the excitonic quantum beat in a three-level system in disk-shaped quantum dots. The non-stationary electron wave function and the time-dependent exciton absorption intensity under the effect of an intensity pump laser that resonates with two excited electron states were also provided. Our numerical findings demonstrate that the time-dependent exciton absorption intensity takes the shape of a periodic oscillation when the quantum dot is subjected to a powerful resonant pump laser. This is clear evidence that quantum beats appears in the quantum disk. Additionally, the dot radius and the pump field detuning significantly affect the beat characteristics, such as frequency and amplitude.","PeriodicalId":13004,"journal":{"name":"Hue University Journal of Science: Natural Science","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exciton quantum beats in GaAs/AlAs disk-shaped quantum dots\",\"authors\":\"Thi Dieu Hien Le, Thi Ngoc Bao Le, Nhu Thao Dinh\",\"doi\":\"10.26459/hueunijns.v132i1b.6909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the renormalized wavefunction approach, we examined the excitonic quantum beat in a three-level system in disk-shaped quantum dots. The non-stationary electron wave function and the time-dependent exciton absorption intensity under the effect of an intensity pump laser that resonates with two excited electron states were also provided. Our numerical findings demonstrate that the time-dependent exciton absorption intensity takes the shape of a periodic oscillation when the quantum dot is subjected to a powerful resonant pump laser. This is clear evidence that quantum beats appears in the quantum disk. Additionally, the dot radius and the pump field detuning significantly affect the beat characteristics, such as frequency and amplitude.\",\"PeriodicalId\":13004,\"journal\":{\"name\":\"Hue University Journal of Science: Natural Science\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hue University Journal of Science: Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26459/hueunijns.v132i1b.6909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hue University Journal of Science: Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26459/hueunijns.v132i1b.6909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exciton quantum beats in GaAs/AlAs disk-shaped quantum dots
Using the renormalized wavefunction approach, we examined the excitonic quantum beat in a three-level system in disk-shaped quantum dots. The non-stationary electron wave function and the time-dependent exciton absorption intensity under the effect of an intensity pump laser that resonates with two excited electron states were also provided. Our numerical findings demonstrate that the time-dependent exciton absorption intensity takes the shape of a periodic oscillation when the quantum dot is subjected to a powerful resonant pump laser. This is clear evidence that quantum beats appears in the quantum disk. Additionally, the dot radius and the pump field detuning significantly affect the beat characteristics, such as frequency and amplitude.