弱阻尼广义Boussinesq方程解的整体存在性和时间衰减率

IF 0.5 4区 数学 Q3 MATHEMATICS
Yinxia Wang, Zehua Luo, Dan Li
{"title":"弱阻尼广义Boussinesq方程解的整体存在性和时间衰减率","authors":"Yinxia Wang, Zehua Luo, Dan Li","doi":"10.1063/5.0135436","DOIUrl":null,"url":null,"abstract":"In this paper, we study the initial value problem for the generalized Boussineq equation with weak damping. The existence and time-decay rates of global solutions and its derivatives are established for all space dimensions d ≥ 1, provided that the norm of the initial data is suitably small. The negative Sobolev norms of the initial data in low frequency are shown to be preserved along time evolution and enhance the decay rates of global solutions. The proof is based on the energy method and flexible interpolation trick without investigating the corresponding linear equation.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"58 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence and time-decay rates of solutions to the generalized Boussinesq equation with weak damping\",\"authors\":\"Yinxia Wang, Zehua Luo, Dan Li\",\"doi\":\"10.1063/5.0135436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the initial value problem for the generalized Boussineq equation with weak damping. The existence and time-decay rates of global solutions and its derivatives are established for all space dimensions d ≥ 1, provided that the norm of the initial data is suitably small. The negative Sobolev norms of the initial data in low frequency are shown to be preserved along time evolution and enhance the decay rates of global solutions. The proof is based on the energy method and flexible interpolation trick without investigating the corresponding linear equation.\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0135436\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0135436","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有弱阻尼的广义Boussineq方程的初值问题。在初始数据范数适当小的条件下,建立了所有空间维d≥1时全局解及其导数的存在性和时间衰减率。低频初始数据的负Sobolev范数随时间演化而保持不变,提高了全局解的衰减率。该证明是基于能量法和柔性插值技巧,而没有研究相应的线性方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence and time-decay rates of solutions to the generalized Boussinesq equation with weak damping
In this paper, we study the initial value problem for the generalized Boussineq equation with weak damping. The existence and time-decay rates of global solutions and its derivatives are established for all space dimensions d ≥ 1, provided that the norm of the initial data is suitably small. The negative Sobolev norms of the initial data in low frequency are shown to be preserved along time evolution and enhance the decay rates of global solutions. The proof is based on the energy method and flexible interpolation trick without investigating the corresponding linear equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信