Georgeta Totea, D. Ionita, I. Demetrescu, M. Mitache
{"title":"新型锆二元合金在人全血中的体外血液相容性及腐蚀行为","authors":"Georgeta Totea, D. Ionita, I. Demetrescu, M. Mitache","doi":"10.2478/s11532-014-0535-1","DOIUrl":null,"url":null,"abstract":"AbstractThe aim of this study is to evaluate the accuracy of three binary alloys’ composition, and their biocompatibility. Depending on the intended use of the medical devices made from these materials, dynamic or static tests should be performed. We have chosen static tests as we thought they may be used as knee or hip replacement, and not as cardiac valves.Three binary alloys ( Zr10Nb, Zr2.5Nb and Zr12Ta) were obtained from high purity powders (>99.9%), using an induction furnace first, and an electric arc furnace for a perfect homogenization. Their final composition was verified with a XRF analyzer-INNOV-X.Hemolysis tests can determine the degree of red blood cells lysis and the release of hemoglobin. The released hemoglobin quantity was extremely small, under 2%, in all cases, and the coagulation tests showed no risk for thrombosis. The electrochemical behavior was also studied in biological fluid, human female serum, and showed a low corrosion rate.The obtained alloys do not cause hemolysis, so they are hemocompatible with all blood types.\n","PeriodicalId":9888,"journal":{"name":"Central European Journal of Chemistry","volume":"95 1","pages":"796-803"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"In vitro hemocompatibility and corrosion behavior of new Zr-binary alloys in whole human blood\",\"authors\":\"Georgeta Totea, D. Ionita, I. Demetrescu, M. Mitache\",\"doi\":\"10.2478/s11532-014-0535-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThe aim of this study is to evaluate the accuracy of three binary alloys’ composition, and their biocompatibility. Depending on the intended use of the medical devices made from these materials, dynamic or static tests should be performed. We have chosen static tests as we thought they may be used as knee or hip replacement, and not as cardiac valves.Three binary alloys ( Zr10Nb, Zr2.5Nb and Zr12Ta) were obtained from high purity powders (>99.9%), using an induction furnace first, and an electric arc furnace for a perfect homogenization. Their final composition was verified with a XRF analyzer-INNOV-X.Hemolysis tests can determine the degree of red blood cells lysis and the release of hemoglobin. The released hemoglobin quantity was extremely small, under 2%, in all cases, and the coagulation tests showed no risk for thrombosis. The electrochemical behavior was also studied in biological fluid, human female serum, and showed a low corrosion rate.The obtained alloys do not cause hemolysis, so they are hemocompatible with all blood types.\\n\",\"PeriodicalId\":9888,\"journal\":{\"name\":\"Central European Journal of Chemistry\",\"volume\":\"95 1\",\"pages\":\"796-803\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11532-014-0535-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11532-014-0535-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In vitro hemocompatibility and corrosion behavior of new Zr-binary alloys in whole human blood
AbstractThe aim of this study is to evaluate the accuracy of three binary alloys’ composition, and their biocompatibility. Depending on the intended use of the medical devices made from these materials, dynamic or static tests should be performed. We have chosen static tests as we thought they may be used as knee or hip replacement, and not as cardiac valves.Three binary alloys ( Zr10Nb, Zr2.5Nb and Zr12Ta) were obtained from high purity powders (>99.9%), using an induction furnace first, and an electric arc furnace for a perfect homogenization. Their final composition was verified with a XRF analyzer-INNOV-X.Hemolysis tests can determine the degree of red blood cells lysis and the release of hemoglobin. The released hemoglobin quantity was extremely small, under 2%, in all cases, and the coagulation tests showed no risk for thrombosis. The electrochemical behavior was also studied in biological fluid, human female serum, and showed a low corrosion rate.The obtained alloys do not cause hemolysis, so they are hemocompatible with all blood types.