非现场油气厂混凝土结构抗爆破RC梁设计与分析

S. Al-Jasmi, N. Ariffin, M. A. Seman
{"title":"非现场油气厂混凝土结构抗爆破RC梁设计与分析","authors":"S. Al-Jasmi, N. Ariffin, M. A. Seman","doi":"10.4028/p-kq5h1b","DOIUrl":null,"url":null,"abstract":"The impact resistance of Reinforced Concrete (RC) beams, as the major structural load-bearing member, is an integral consideration in the design of concrete structures at the off-site of oil and gas pants against powerful dynamic loads. As a result, impact-resistant design is crucial for the maintenance, preservation, and safety of such structures. The RC beams' impact performance, on the other hand, remain unclear, and approaches for reinforcing RC structures at oil and gas plants to withstand impact loads are currently limited. This paper presents the Finite Element Analysis (FEA) used to simulate the behavior of Reinforced Concrete (RC) beams strengthened with Carbon Fiber Reinforced Polymer (CFRP) laminates. Five beams were modelled in FEA software. In those five beams, one beam was used as control beam without CFRP reinforcement, two beams were reinforced with single CFRP sheet, and the other two were reinforced with two CFRP sheets. Total deformation, von Misses stress, shear stress and principal strain were obtained and compared with the experimental results. The numerical simulation results agree well with the test findings reported in Neagoe's experimental study. The simulation results demonstrated that CFRP could indeed relieve high stress in impact unstable concrete, decrease beam body deformation, constrain crack development, and offer additional impact resistance. Under various impact load scenarios, CFRP can successfully restrain deformation. As a result, strengthening RC beams with CFRP is an efficient way to improve impact load resistance. Using computer software to design and simulate these elements was also much quicker and less costly. As a result, ANSYS can be used to model experimental beams. Finite element ANSYS software can also be used to validate experimental results.","PeriodicalId":10603,"journal":{"name":"Construction Technologies and Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of Blast Resistant RC Beams for Concrete Structures at Off-Site Oil and Gas Plants\",\"authors\":\"S. Al-Jasmi, N. Ariffin, M. A. Seman\",\"doi\":\"10.4028/p-kq5h1b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impact resistance of Reinforced Concrete (RC) beams, as the major structural load-bearing member, is an integral consideration in the design of concrete structures at the off-site of oil and gas pants against powerful dynamic loads. As a result, impact-resistant design is crucial for the maintenance, preservation, and safety of such structures. The RC beams' impact performance, on the other hand, remain unclear, and approaches for reinforcing RC structures at oil and gas plants to withstand impact loads are currently limited. This paper presents the Finite Element Analysis (FEA) used to simulate the behavior of Reinforced Concrete (RC) beams strengthened with Carbon Fiber Reinforced Polymer (CFRP) laminates. Five beams were modelled in FEA software. In those five beams, one beam was used as control beam without CFRP reinforcement, two beams were reinforced with single CFRP sheet, and the other two were reinforced with two CFRP sheets. Total deformation, von Misses stress, shear stress and principal strain were obtained and compared with the experimental results. The numerical simulation results agree well with the test findings reported in Neagoe's experimental study. The simulation results demonstrated that CFRP could indeed relieve high stress in impact unstable concrete, decrease beam body deformation, constrain crack development, and offer additional impact resistance. Under various impact load scenarios, CFRP can successfully restrain deformation. As a result, strengthening RC beams with CFRP is an efficient way to improve impact load resistance. Using computer software to design and simulate these elements was also much quicker and less costly. As a result, ANSYS can be used to model experimental beams. Finite element ANSYS software can also be used to validate experimental results.\",\"PeriodicalId\":10603,\"journal\":{\"name\":\"Construction Technologies and Architecture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction Technologies and Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-kq5h1b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction Technologies and Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-kq5h1b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

钢筋混凝土梁作为结构的主要承重构件,其抗冲击性能是油气田管线外混凝土结构抗强动荷载设计中不可缺少的考虑因素。因此,抗冲击设计对这些结构的维护、保存和安全至关重要。另一方面,RC梁的冲击性能仍然不清楚,并且目前在石油和天然气工厂中增强RC结构以承受冲击载荷的方法有限。本文介绍了用有限元分析(FEA)方法模拟碳纤维增强聚合物(CFRP)层合板加固钢筋混凝土梁的受力情况。用有限元软件对5根梁进行了建模。5根梁中,1根梁为控制梁,不加碳纤维布加固,2根梁加单层碳纤维布加固,另外2根梁加双层碳纤维布加固。得到了总变形、von mises应力、剪切应力和主应变,并与实验结果进行了比较。数值模拟结果与Neagoe的实验研究结果吻合较好。模拟结果表明,碳纤维布确实可以缓解冲击不稳定混凝土中的高应力,减少梁体变形,约束裂缝发展,并提供额外的抗冲击能力。在各种冲击载荷情况下,CFRP都能很好地抑制变形。因此,用碳纤维布加固钢筋混凝土梁是提高抗冲击荷载能力的有效途径。使用计算机软件来设计和模拟这些元素也更快,成本更低。因此,ANSYS可以用于模拟实验梁。还可以利用ANSYS有限元软件对实验结果进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Analysis of Blast Resistant RC Beams for Concrete Structures at Off-Site Oil and Gas Plants
The impact resistance of Reinforced Concrete (RC) beams, as the major structural load-bearing member, is an integral consideration in the design of concrete structures at the off-site of oil and gas pants against powerful dynamic loads. As a result, impact-resistant design is crucial for the maintenance, preservation, and safety of such structures. The RC beams' impact performance, on the other hand, remain unclear, and approaches for reinforcing RC structures at oil and gas plants to withstand impact loads are currently limited. This paper presents the Finite Element Analysis (FEA) used to simulate the behavior of Reinforced Concrete (RC) beams strengthened with Carbon Fiber Reinforced Polymer (CFRP) laminates. Five beams were modelled in FEA software. In those five beams, one beam was used as control beam without CFRP reinforcement, two beams were reinforced with single CFRP sheet, and the other two were reinforced with two CFRP sheets. Total deformation, von Misses stress, shear stress and principal strain were obtained and compared with the experimental results. The numerical simulation results agree well with the test findings reported in Neagoe's experimental study. The simulation results demonstrated that CFRP could indeed relieve high stress in impact unstable concrete, decrease beam body deformation, constrain crack development, and offer additional impact resistance. Under various impact load scenarios, CFRP can successfully restrain deformation. As a result, strengthening RC beams with CFRP is an efficient way to improve impact load resistance. Using computer software to design and simulate these elements was also much quicker and less costly. As a result, ANSYS can be used to model experimental beams. Finite element ANSYS software can also be used to validate experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信