Zeyu Shen , Mingyang Zhao , Xiaohong Jia , Yuan Liang , Lubin Fan , Dong-Ming Yan
{"title":"结合凸包和有向图实现快速准确的椭圆检测","authors":"Zeyu Shen , Mingyang Zhao , Xiaohong Jia , Yuan Liang , Lubin Fan , Dong-Ming Yan","doi":"10.1016/j.gmod.2021.101110","DOIUrl":null,"url":null,"abstract":"<div><p><span>Detecting ellipses<span> from images is a fundamental task in many computer vision applications. However, due to the complexity of real-world scenarios, it is still a challenge to detect ellipses accurately and efficiently. In this paper, we propose a novel method to tackle this problem based on the fast computation of </span></span><span><em>convex hull</em></span> and <span><em>directed graph</em></span><span>, which achieves promising results on both accuracy and efficiency. We use Depth-First-Search to extract branch-free curves after adaptive edge detection. Line segments are used to represent the curvature characteristic of the curves, followed by splitting at sharp corners and inflection points<span> to attain smooth arcs. Then the convex hull is constructed, together with the distance, length, and direction constraints, to find co-elliptic arc pairs. Arcs and their connectivity are encoded into a sparse directed graph, and then ellipses are generated via a fast access of the adjacency list<span>. Finally, salient ellipses are selected subject to strict verification and weighted clustering. Extensive experiments are conducted on eight real-world datasets (six publicly available and two built by ourselves), as well as five synthetic datasets. Our method achieves the overall highest F-measure with competitive speed compared to representative state-of-the-art methods.</span></span></span></p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"116 ","pages":"Article 101110"},"PeriodicalIF":2.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.gmod.2021.101110","citationCount":"7","resultStr":"{\"title\":\"Combining convex hull and directed graph for fast and accurate ellipse detection\",\"authors\":\"Zeyu Shen , Mingyang Zhao , Xiaohong Jia , Yuan Liang , Lubin Fan , Dong-Ming Yan\",\"doi\":\"10.1016/j.gmod.2021.101110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Detecting ellipses<span> from images is a fundamental task in many computer vision applications. However, due to the complexity of real-world scenarios, it is still a challenge to detect ellipses accurately and efficiently. In this paper, we propose a novel method to tackle this problem based on the fast computation of </span></span><span><em>convex hull</em></span> and <span><em>directed graph</em></span><span>, which achieves promising results on both accuracy and efficiency. We use Depth-First-Search to extract branch-free curves after adaptive edge detection. Line segments are used to represent the curvature characteristic of the curves, followed by splitting at sharp corners and inflection points<span> to attain smooth arcs. Then the convex hull is constructed, together with the distance, length, and direction constraints, to find co-elliptic arc pairs. Arcs and their connectivity are encoded into a sparse directed graph, and then ellipses are generated via a fast access of the adjacency list<span>. Finally, salient ellipses are selected subject to strict verification and weighted clustering. Extensive experiments are conducted on eight real-world datasets (six publicly available and two built by ourselves), as well as five synthetic datasets. Our method achieves the overall highest F-measure with competitive speed compared to representative state-of-the-art methods.</span></span></span></p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"116 \",\"pages\":\"Article 101110\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.gmod.2021.101110\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070321000151\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070321000151","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Combining convex hull and directed graph for fast and accurate ellipse detection
Detecting ellipses from images is a fundamental task in many computer vision applications. However, due to the complexity of real-world scenarios, it is still a challenge to detect ellipses accurately and efficiently. In this paper, we propose a novel method to tackle this problem based on the fast computation of convex hull and directed graph, which achieves promising results on both accuracy and efficiency. We use Depth-First-Search to extract branch-free curves after adaptive edge detection. Line segments are used to represent the curvature characteristic of the curves, followed by splitting at sharp corners and inflection points to attain smooth arcs. Then the convex hull is constructed, together with the distance, length, and direction constraints, to find co-elliptic arc pairs. Arcs and their connectivity are encoded into a sparse directed graph, and then ellipses are generated via a fast access of the adjacency list. Finally, salient ellipses are selected subject to strict verification and weighted clustering. Extensive experiments are conducted on eight real-world datasets (six publicly available and two built by ourselves), as well as five synthetic datasets. Our method achieves the overall highest F-measure with competitive speed compared to representative state-of-the-art methods.
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.