磁滞量化器

K. Jin'no, M. Tanaka
{"title":"磁滞量化器","authors":"K. Jin'no, M. Tanaka","doi":"10.1109/ISCAS.1997.608919","DOIUrl":null,"url":null,"abstract":"This paper proposes two type quantizers by using mutual connected neural networks. Since each cell of the neural networks has hysteresis properties, these quantizers can convert any input signals into a suitable quantization output. Also, we propose its application for image processing which can be intensity conversion. By using an area intensity method, we can get high quality output images in spite of to use bilevel output function.","PeriodicalId":68559,"journal":{"name":"电路与系统学报","volume":"34 1","pages":"661-664 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Hysteresis quantizer\",\"authors\":\"K. Jin'no, M. Tanaka\",\"doi\":\"10.1109/ISCAS.1997.608919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes two type quantizers by using mutual connected neural networks. Since each cell of the neural networks has hysteresis properties, these quantizers can convert any input signals into a suitable quantization output. Also, we propose its application for image processing which can be intensity conversion. By using an area intensity method, we can get high quality output images in spite of to use bilevel output function.\",\"PeriodicalId\":68559,\"journal\":{\"name\":\"电路与系统学报\",\"volume\":\"34 1\",\"pages\":\"661-664 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电路与系统学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.1997.608919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电路与系统学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ISCAS.1997.608919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文利用互连接神经网络提出了两种类型的量化器。由于神经网络的每个单元都具有滞后特性,这些量化器可以将任何输入信号转换为合适的量化输出。并提出了它在图像处理中的应用,可以进行强度转换。采用面积强度法可以在不使用双电平输出函数的情况下获得高质量的输出图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hysteresis quantizer
This paper proposes two type quantizers by using mutual connected neural networks. Since each cell of the neural networks has hysteresis properties, these quantizers can convert any input signals into a suitable quantization output. Also, we propose its application for image processing which can be intensity conversion. By using an area intensity method, we can get high quality output images in spite of to use bilevel output function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
2463
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信