{"title":"原位透射电镜耦合谐振微悬臂综合评价氧化锌纳米线的硫化性能","authors":"Xueqing Wang, P. Xu, Haitao Yu, Xinxin Li","doi":"10.1109/TRANSDUCERS.2019.8808584","DOIUrl":null,"url":null,"abstract":"This paper reports a new technique with in-situ transmission electron microscopy (in-situ TEM) and resonant microcantilever to comprehensively evaluate sulfurization performance of ZnO nanowires. Herein, in-situ TEM is used to real-time observe the sulfurization process of ZnO nanowires under SO2-contained atmosphere. Based on temperature-varying micro-gravimetric method, thermodynamic interaction between ZnO nanowires and SO2 molecules is quantitatively evaluated by resonant microcantilever. By exposing the ZnO nanowires sample to SO2-contained atmosphere, a thick shell layer of ZnSO3 can be formed onto the surface of ZnO nanowires and a novel core-shell nanowire structure of ZnO@ZnSO3 is obtained finally. According to our comprehensive evaluation results, the ZnO nanowires sample with 100 nm diameter exhibits high reactive to SO2 molecules and is suitable for SO2 capture and storage.","PeriodicalId":6672,"journal":{"name":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","volume":"47 1","pages":"1187-1190"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Situ Transmission Electron Microscopy Coupled with Resonant Microcantilever for Comprehensive Evaluating Sulfurization Performance of Zinc Oxide Nanowires\",\"authors\":\"Xueqing Wang, P. Xu, Haitao Yu, Xinxin Li\",\"doi\":\"10.1109/TRANSDUCERS.2019.8808584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a new technique with in-situ transmission electron microscopy (in-situ TEM) and resonant microcantilever to comprehensively evaluate sulfurization performance of ZnO nanowires. Herein, in-situ TEM is used to real-time observe the sulfurization process of ZnO nanowires under SO2-contained atmosphere. Based on temperature-varying micro-gravimetric method, thermodynamic interaction between ZnO nanowires and SO2 molecules is quantitatively evaluated by resonant microcantilever. By exposing the ZnO nanowires sample to SO2-contained atmosphere, a thick shell layer of ZnSO3 can be formed onto the surface of ZnO nanowires and a novel core-shell nanowire structure of ZnO@ZnSO3 is obtained finally. According to our comprehensive evaluation results, the ZnO nanowires sample with 100 nm diameter exhibits high reactive to SO2 molecules and is suitable for SO2 capture and storage.\",\"PeriodicalId\":6672,\"journal\":{\"name\":\"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)\",\"volume\":\"47 1\",\"pages\":\"1187-1190\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2019.8808584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2019.8808584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In-Situ Transmission Electron Microscopy Coupled with Resonant Microcantilever for Comprehensive Evaluating Sulfurization Performance of Zinc Oxide Nanowires
This paper reports a new technique with in-situ transmission electron microscopy (in-situ TEM) and resonant microcantilever to comprehensively evaluate sulfurization performance of ZnO nanowires. Herein, in-situ TEM is used to real-time observe the sulfurization process of ZnO nanowires under SO2-contained atmosphere. Based on temperature-varying micro-gravimetric method, thermodynamic interaction between ZnO nanowires and SO2 molecules is quantitatively evaluated by resonant microcantilever. By exposing the ZnO nanowires sample to SO2-contained atmosphere, a thick shell layer of ZnSO3 can be formed onto the surface of ZnO nanowires and a novel core-shell nanowire structure of ZnO@ZnSO3 is obtained finally. According to our comprehensive evaluation results, the ZnO nanowires sample with 100 nm diameter exhibits high reactive to SO2 molecules and is suitable for SO2 capture and storage.