I. Aryanian, A. Ahmadi, Mehdi Rabbani, Sina Hassibi, M. Karimipour
{"title":"采用最佳相位分布的双偏振双频反射天线的设计与制造","authors":"I. Aryanian, A. Ahmadi, Mehdi Rabbani, Sina Hassibi, M. Karimipour","doi":"10.3906/ELK-1807-324","DOIUrl":null,"url":null,"abstract":"Two main factors limiting the reflectarray bandwidth are different phase slopes versus the frequency at every point on the aperture and the phase limitation of comprising elements at different frequencies. Considering these two factors, a novel design method is proposed to implement a dual-band, dual-polarized reflectarray antenna in X and Ku bands. An optimization algorithm is adopted to find the optimum phase for each unit cell on the reflectarray aperture. The best geometrical parameters of the phasing elements are suggested based on the phase variation of the element versus frequency and the element position with respect to the antenna feed. Many different classes of phasing elements with identical base structures are investigated to provide a lookup table for the optimization algorithm. The optimum phases are obtained so that two collimated beams are realized within the frequencies of 10.95 GHz to 11.7 GHz and 14 GHz to 14.5 GHz with vertical and horizontal polarizations, respectively. From the experimental results, the peak directivity of 27.1 dBi and 30.6 dBi, aperture efficiency of 42% and 67%, and cross-polarization level of less than –15 dB and –20 dB were obtained in the lower and upper bands, respectively.","PeriodicalId":49410,"journal":{"name":"Turkish Journal of Electrical Engineering and Computer Sciences","volume":"58 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and fabrication of a dual-polarized, dual-band reflectarray using optimal phase distribution\",\"authors\":\"I. Aryanian, A. Ahmadi, Mehdi Rabbani, Sina Hassibi, M. Karimipour\",\"doi\":\"10.3906/ELK-1807-324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two main factors limiting the reflectarray bandwidth are different phase slopes versus the frequency at every point on the aperture and the phase limitation of comprising elements at different frequencies. Considering these two factors, a novel design method is proposed to implement a dual-band, dual-polarized reflectarray antenna in X and Ku bands. An optimization algorithm is adopted to find the optimum phase for each unit cell on the reflectarray aperture. The best geometrical parameters of the phasing elements are suggested based on the phase variation of the element versus frequency and the element position with respect to the antenna feed. Many different classes of phasing elements with identical base structures are investigated to provide a lookup table for the optimization algorithm. The optimum phases are obtained so that two collimated beams are realized within the frequencies of 10.95 GHz to 11.7 GHz and 14 GHz to 14.5 GHz with vertical and horizontal polarizations, respectively. From the experimental results, the peak directivity of 27.1 dBi and 30.6 dBi, aperture efficiency of 42% and 67%, and cross-polarization level of less than –15 dB and –20 dB were obtained in the lower and upper bands, respectively.\",\"PeriodicalId\":49410,\"journal\":{\"name\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3906/ELK-1807-324\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Electrical Engineering and Computer Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3906/ELK-1807-324","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Design and fabrication of a dual-polarized, dual-band reflectarray using optimal phase distribution
Two main factors limiting the reflectarray bandwidth are different phase slopes versus the frequency at every point on the aperture and the phase limitation of comprising elements at different frequencies. Considering these two factors, a novel design method is proposed to implement a dual-band, dual-polarized reflectarray antenna in X and Ku bands. An optimization algorithm is adopted to find the optimum phase for each unit cell on the reflectarray aperture. The best geometrical parameters of the phasing elements are suggested based on the phase variation of the element versus frequency and the element position with respect to the antenna feed. Many different classes of phasing elements with identical base structures are investigated to provide a lookup table for the optimization algorithm. The optimum phases are obtained so that two collimated beams are realized within the frequencies of 10.95 GHz to 11.7 GHz and 14 GHz to 14.5 GHz with vertical and horizontal polarizations, respectively. From the experimental results, the peak directivity of 27.1 dBi and 30.6 dBi, aperture efficiency of 42% and 67%, and cross-polarization level of less than –15 dB and –20 dB were obtained in the lower and upper bands, respectively.
期刊介绍:
The Turkish Journal of Electrical Engineering & Computer Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK)
Accepts English-language manuscripts in the areas of power and energy, environmental sustainability and energy efficiency, electronics, industry applications, control systems, information and systems, applied electromagnetics, communications, signal and image processing, tomographic image reconstruction, face recognition, biometrics, speech processing, video processing and analysis, object recognition, classification, feature extraction, parallel and distributed computing, cognitive systems, interaction, robotics, digital libraries and content, personalized healthcare, ICT for mobility, sensors, and artificial intelligence.
Contribution is open to researchers of all nationalities.