{"title":"FI-FPN:用于目标检测的特征集成特征金字塔网络","authors":"Qichen Su, Guangjian Zhang, Shuang Wu, Yiming Yin","doi":"10.3233/aic-220183","DOIUrl":null,"url":null,"abstract":"The multi-layer feature pyramid structure, represented by FPN, is widely used in object detection. However, due to the aliasing effect brought by up-sampling, the current feature pyramid structure still has defects, such as loss of high-level feature information and weakening of low-level small object features. In this paper, we propose FI-FPN to solve these problems, which is mainly composed of a multi-receptive field fusion (MRF) module, contextual information filtering (CIF) module, and efficient semantic information fusion (ESF) module. Particularly, MRF stacks dilated convolutional layers and max-pooling layers to obtain receptive fields of different scales, reducing the information loss of high-level features; CIF introduces a channel attention mechanism, and the channel attention weights are reassigned; ESF introduces channel concatenation instead of element-wise operation for bottom-up feature fusion and alleviating aliasing effects, facilitating efficient information flow. Experiments show that under the ResNet50 backbone, our method improves the performance of Faster RCNN and RetinaNet by 3.5 and 4.6 mAP, respectively. Our method has competitive performance compared to other advanced methods.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"2004 1","pages":"191-203"},"PeriodicalIF":1.4000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FI-FPN: Feature-integration feature pyramid network for object detection\",\"authors\":\"Qichen Su, Guangjian Zhang, Shuang Wu, Yiming Yin\",\"doi\":\"10.3233/aic-220183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multi-layer feature pyramid structure, represented by FPN, is widely used in object detection. However, due to the aliasing effect brought by up-sampling, the current feature pyramid structure still has defects, such as loss of high-level feature information and weakening of low-level small object features. In this paper, we propose FI-FPN to solve these problems, which is mainly composed of a multi-receptive field fusion (MRF) module, contextual information filtering (CIF) module, and efficient semantic information fusion (ESF) module. Particularly, MRF stacks dilated convolutional layers and max-pooling layers to obtain receptive fields of different scales, reducing the information loss of high-level features; CIF introduces a channel attention mechanism, and the channel attention weights are reassigned; ESF introduces channel concatenation instead of element-wise operation for bottom-up feature fusion and alleviating aliasing effects, facilitating efficient information flow. Experiments show that under the ResNet50 backbone, our method improves the performance of Faster RCNN and RetinaNet by 3.5 and 4.6 mAP, respectively. Our method has competitive performance compared to other advanced methods.\",\"PeriodicalId\":50835,\"journal\":{\"name\":\"AI Communications\",\"volume\":\"2004 1\",\"pages\":\"191-203\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/aic-220183\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/aic-220183","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
FI-FPN: Feature-integration feature pyramid network for object detection
The multi-layer feature pyramid structure, represented by FPN, is widely used in object detection. However, due to the aliasing effect brought by up-sampling, the current feature pyramid structure still has defects, such as loss of high-level feature information and weakening of low-level small object features. In this paper, we propose FI-FPN to solve these problems, which is mainly composed of a multi-receptive field fusion (MRF) module, contextual information filtering (CIF) module, and efficient semantic information fusion (ESF) module. Particularly, MRF stacks dilated convolutional layers and max-pooling layers to obtain receptive fields of different scales, reducing the information loss of high-level features; CIF introduces a channel attention mechanism, and the channel attention weights are reassigned; ESF introduces channel concatenation instead of element-wise operation for bottom-up feature fusion and alleviating aliasing effects, facilitating efficient information flow. Experiments show that under the ResNet50 backbone, our method improves the performance of Faster RCNN and RetinaNet by 3.5 and 4.6 mAP, respectively. Our method has competitive performance compared to other advanced methods.
期刊介绍:
AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies.
AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.