R. Vinoth, M. Parthiban, Naveen Kumar Nagalli, S. Prakash
{"title":"纳米流体对三角形微通道散热器传热和压降影响的数值研究","authors":"R. Vinoth, M. Parthiban, Naveen Kumar Nagalli, S. Prakash","doi":"10.20902/ijctr.2019.130121","DOIUrl":null,"url":null,"abstract":"The present work deals with study the heat transfer and pressure drop of the triangular microchannel heat sink(MCHS), along different working fluids. The nanofluids such as CuO and Al2O3are used as coolants to enhance the performance of triangular microchannel heat sinks.The modeling and analysis were done with the help of Solid works. The heat transfer performance of the triangular fins were studied with the Reynolds number varying from 96 460. Thenumerical result shows that the triangular oblique finned microchannel heat sink has large heat transfer rateof 12.9 % for varying Reynolds number when compared to a straight channel. Similarly, the pressure drop also increases with 38.2% for triangular microchannel flowing nanofluid. Consequently triangular microchannel is enhancing the heat removed in electronics chip cooling.","PeriodicalId":13853,"journal":{"name":"International Journal of ChemTech Research","volume":"445 1","pages":"173-180"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study of nanofluids effect on heat transfer and\\npressure drop of triangular microchannel heat sink\",\"authors\":\"R. Vinoth, M. Parthiban, Naveen Kumar Nagalli, S. Prakash\",\"doi\":\"10.20902/ijctr.2019.130121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work deals with study the heat transfer and pressure drop of the triangular microchannel heat sink(MCHS), along different working fluids. The nanofluids such as CuO and Al2O3are used as coolants to enhance the performance of triangular microchannel heat sinks.The modeling and analysis were done with the help of Solid works. The heat transfer performance of the triangular fins were studied with the Reynolds number varying from 96 460. Thenumerical result shows that the triangular oblique finned microchannel heat sink has large heat transfer rateof 12.9 % for varying Reynolds number when compared to a straight channel. Similarly, the pressure drop also increases with 38.2% for triangular microchannel flowing nanofluid. Consequently triangular microchannel is enhancing the heat removed in electronics chip cooling.\",\"PeriodicalId\":13853,\"journal\":{\"name\":\"International Journal of ChemTech Research\",\"volume\":\"445 1\",\"pages\":\"173-180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of ChemTech Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20902/ijctr.2019.130121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of ChemTech Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20902/ijctr.2019.130121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical study of nanofluids effect on heat transfer and
pressure drop of triangular microchannel heat sink
The present work deals with study the heat transfer and pressure drop of the triangular microchannel heat sink(MCHS), along different working fluids. The nanofluids such as CuO and Al2O3are used as coolants to enhance the performance of triangular microchannel heat sinks.The modeling and analysis were done with the help of Solid works. The heat transfer performance of the triangular fins were studied with the Reynolds number varying from 96 460. Thenumerical result shows that the triangular oblique finned microchannel heat sink has large heat transfer rateof 12.9 % for varying Reynolds number when compared to a straight channel. Similarly, the pressure drop also increases with 38.2% for triangular microchannel flowing nanofluid. Consequently triangular microchannel is enhancing the heat removed in electronics chip cooling.