特殊拓扑结构线性定常系统的可遗传性

G. Pasquale, M. E. Valcher
{"title":"特殊拓扑结构线性定常系统的可遗传性","authors":"G. Pasquale, M. E. Valcher","doi":"10.48550/arXiv.2204.08536","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the herdability property, namely the capability of a system to be driven towards the (interior of the) positive orthant, for linear time-invariant state-space models. Herdability of certain matrix pairs (A,B), where A is the adjacency matrix of a multi-agent network, and B is a selection matrix that singles out a subset of the agents (the\"network leaders\"), is explored. The cases when the graph associated with A, G(A), is directed and clustering balanced (in particular, structurally balanced), or it has a tree topology and there is a single leader, are investigated.","PeriodicalId":13196,"journal":{"name":"IEEE Robotics Autom. Mag.","volume":"51 1","pages":"110804"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Herdability of Linear Time-Invariant Systems with Special Topological Structures\",\"authors\":\"G. Pasquale, M. E. Valcher\",\"doi\":\"10.48550/arXiv.2204.08536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the herdability property, namely the capability of a system to be driven towards the (interior of the) positive orthant, for linear time-invariant state-space models. Herdability of certain matrix pairs (A,B), where A is the adjacency matrix of a multi-agent network, and B is a selection matrix that singles out a subset of the agents (the\\\"network leaders\\\"), is explored. The cases when the graph associated with A, G(A), is directed and clustering balanced (in particular, structurally balanced), or it has a tree topology and there is a single leader, are investigated.\",\"PeriodicalId\":13196,\"journal\":{\"name\":\"IEEE Robotics Autom. Mag.\",\"volume\":\"51 1\",\"pages\":\"110804\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics Autom. Mag.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.08536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics Autom. Mag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.08536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们研究了线性时不变状态空间模型的可遗传性,即系统被驱动到正正交(内)的能力。探讨了某些矩阵对(A,B)的可遗传性,其中A是多智能体网络的邻接矩阵,B是挑选出智能体子集(“网络领导者”)的选择矩阵。当与A, G(A)相关联的图是有向的并且聚类平衡(特别是结构平衡),或者它具有树状拓扑并且有一个领导者时,研究了这些情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Herdability of Linear Time-Invariant Systems with Special Topological Structures
In this paper, we investigate the herdability property, namely the capability of a system to be driven towards the (interior of the) positive orthant, for linear time-invariant state-space models. Herdability of certain matrix pairs (A,B), where A is the adjacency matrix of a multi-agent network, and B is a selection matrix that singles out a subset of the agents (the"network leaders"), is explored. The cases when the graph associated with A, G(A), is directed and clustering balanced (in particular, structurally balanced), or it has a tree topology and there is a single leader, are investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信