信息-物理-人系统生成设计研究问题

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
D. Rosen, C. Choi
{"title":"信息-物理-人系统生成设计研究问题","authors":"D. Rosen, C. Choi","doi":"10.1115/1.4062598","DOIUrl":null,"url":null,"abstract":"\n Cyber-physical-human systems (CPHS) are smart products and systems that offer services to their customers, supported by back-end systems (e.g., information, finance) and other infrastructure. In this paper, initial concepts and research issues are presented regarding the computational design of CPHS, CPHS families, and generations of these families. Significant research gaps are identified that should drive future research directions. The approach proposed here is a novel combination of generative and configuration design methods with product family design methodology and an explicit consideration of usability across all human stakeholders. With this approach, a wide variety of CPHS, including customized CPHS, can be developed quickly by sharing technologies and modules across CPHS family members, while ensuring user acceptance. The domain of assistive technology is used in this paper to provide an example field of practice that could benefit from a systematic design methodology and opportunities to leverage technology solutions.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"25 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research Issues in the Generative Design of Cyber-Physical-Human Systems\",\"authors\":\"D. Rosen, C. Choi\",\"doi\":\"10.1115/1.4062598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Cyber-physical-human systems (CPHS) are smart products and systems that offer services to their customers, supported by back-end systems (e.g., information, finance) and other infrastructure. In this paper, initial concepts and research issues are presented regarding the computational design of CPHS, CPHS families, and generations of these families. Significant research gaps are identified that should drive future research directions. The approach proposed here is a novel combination of generative and configuration design methods with product family design methodology and an explicit consideration of usability across all human stakeholders. With this approach, a wide variety of CPHS, including customized CPHS, can be developed quickly by sharing technologies and modules across CPHS family members, while ensuring user acceptance. The domain of assistive technology is used in this paper to provide an example field of practice that could benefit from a systematic design methodology and opportunities to leverage technology solutions.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062598\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062598","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

网络-物理-人类系统(CPHS)是一种智能产品和系统,由后端系统(如信息、金融)和其他基础设施提供支持,为客户提供服务。本文提出了CPHS、CPHS族及其世代的计算设计的初步概念和研究问题。发现了重要的研究空白,应该推动未来的研究方向。这里提出的方法是生成和配置设计方法与产品族设计方法的新颖结合,并明确考虑了所有人类利益相关者的可用性。通过这种方法,可以通过在CPHS家族成员之间共享技术和模块来快速开发各种CPHS,包括定制的CPHS,同时确保用户接受。本文中使用的辅助技术领域提供了一个可以从系统设计方法和利用技术解决方案的机会中受益的实践示例领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research Issues in the Generative Design of Cyber-Physical-Human Systems
Cyber-physical-human systems (CPHS) are smart products and systems that offer services to their customers, supported by back-end systems (e.g., information, finance) and other infrastructure. In this paper, initial concepts and research issues are presented regarding the computational design of CPHS, CPHS families, and generations of these families. Significant research gaps are identified that should drive future research directions. The approach proposed here is a novel combination of generative and configuration design methods with product family design methodology and an explicit consideration of usability across all human stakeholders. With this approach, a wide variety of CPHS, including customized CPHS, can be developed quickly by sharing technologies and modules across CPHS family members, while ensuring user acceptance. The domain of assistive technology is used in this paper to provide an example field of practice that could benefit from a systematic design methodology and opportunities to leverage technology solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
12.90%
发文量
100
审稿时长
6 months
期刊介绍: The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications. Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信