{"title":"实验室规模MAVeP移动原型的开发","authors":"Mohd Azri Abd Mutalib, Norsinnira Zainul Azlan","doi":"10.15282/ijame.19.3.2022.09.0769","DOIUrl":null,"url":null,"abstract":"This paper presents the development, calibration and mechanism control of lab scale Motorised Adjustable Vertical Platform (MAVeP) mobility prototype. MAVeP has been developed and equipped with mecanum wheels to allow an omnidirectional movement. The omnidirectionality, or the ability to move in any direction, without altering the direction of the MAVeP’s body, makes this type of driving useful, especially in narrow and confined areas such as inside satellite assembly, integration and test centre (AITC). Since MAVeP has been delivered at AITC and high accuracy and repeatability movement are crucial during the application, a robot prototype representing MAVeP mobility has been designed and developed. The mechanical and electrical design, including all processes and components, are selected and explained in detail. The development of the robot prototype, its parameters and calibration are also discussed. The DC motor control for separate wheels of the MAVeP mobility prototype using PID controller and the calibrations to synchronous the four wheels’ rotation are also discussed in this paper. The experimental result shows that the robot prototype is established and ready to be used in research.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Lab Scale MAVeP Mobility Prototype\",\"authors\":\"Mohd Azri Abd Mutalib, Norsinnira Zainul Azlan\",\"doi\":\"10.15282/ijame.19.3.2022.09.0769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the development, calibration and mechanism control of lab scale Motorised Adjustable Vertical Platform (MAVeP) mobility prototype. MAVeP has been developed and equipped with mecanum wheels to allow an omnidirectional movement. The omnidirectionality, or the ability to move in any direction, without altering the direction of the MAVeP’s body, makes this type of driving useful, especially in narrow and confined areas such as inside satellite assembly, integration and test centre (AITC). Since MAVeP has been delivered at AITC and high accuracy and repeatability movement are crucial during the application, a robot prototype representing MAVeP mobility has been designed and developed. The mechanical and electrical design, including all processes and components, are selected and explained in detail. The development of the robot prototype, its parameters and calibration are also discussed. The DC motor control for separate wheels of the MAVeP mobility prototype using PID controller and the calibrations to synchronous the four wheels’ rotation are also discussed in this paper. The experimental result shows that the robot prototype is established and ready to be used in research.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.19.3.2022.09.0769\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.3.2022.09.0769","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
This paper presents the development, calibration and mechanism control of lab scale Motorised Adjustable Vertical Platform (MAVeP) mobility prototype. MAVeP has been developed and equipped with mecanum wheels to allow an omnidirectional movement. The omnidirectionality, or the ability to move in any direction, without altering the direction of the MAVeP’s body, makes this type of driving useful, especially in narrow and confined areas such as inside satellite assembly, integration and test centre (AITC). Since MAVeP has been delivered at AITC and high accuracy and repeatability movement are crucial during the application, a robot prototype representing MAVeP mobility has been designed and developed. The mechanical and electrical design, including all processes and components, are selected and explained in detail. The development of the robot prototype, its parameters and calibration are also discussed. The DC motor control for separate wheels of the MAVeP mobility prototype using PID controller and the calibrations to synchronous the four wheels’ rotation are also discussed in this paper. The experimental result shows that the robot prototype is established and ready to be used in research.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.