{"title":"矩阵同态问题的复杂性","authors":"Cheolwon Heo, Hyobin Kim, Siggers Mark","doi":"10.37236/11119","DOIUrl":null,"url":null,"abstract":"We show that for every binary matroid $N$ there is a graph $H_*$ such that for the graphic matroid $M_G$ of a graph $G$, there is a matroid-homomorphism from $M_G$ to $N$ if and only if there is a graph-homomorphism from $G$ to $H_*$. With this we prove a complexity dichotomy for the problem $\\rm{Hom}_\\mathbb{M}(N)$ of deciding if a binary matroid $M$ admits a homomorphism to $N$. The problem is polynomial time solvable if $N$ has a loop or has no circuits of odd length, and is otherwise $\\rm{NP}$-complete. We also get dichotomies for the list, extension, and retraction versions of the problem.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"86 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Complexity of the Matroid Homomorphism Problem\",\"authors\":\"Cheolwon Heo, Hyobin Kim, Siggers Mark\",\"doi\":\"10.37236/11119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that for every binary matroid $N$ there is a graph $H_*$ such that for the graphic matroid $M_G$ of a graph $G$, there is a matroid-homomorphism from $M_G$ to $N$ if and only if there is a graph-homomorphism from $G$ to $H_*$. With this we prove a complexity dichotomy for the problem $\\\\rm{Hom}_\\\\mathbb{M}(N)$ of deciding if a binary matroid $M$ admits a homomorphism to $N$. The problem is polynomial time solvable if $N$ has a loop or has no circuits of odd length, and is otherwise $\\\\rm{NP}$-complete. We also get dichotomies for the list, extension, and retraction versions of the problem.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37236/11119\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/11119","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Complexity of the Matroid Homomorphism Problem
We show that for every binary matroid $N$ there is a graph $H_*$ such that for the graphic matroid $M_G$ of a graph $G$, there is a matroid-homomorphism from $M_G$ to $N$ if and only if there is a graph-homomorphism from $G$ to $H_*$. With this we prove a complexity dichotomy for the problem $\rm{Hom}_\mathbb{M}(N)$ of deciding if a binary matroid $M$ admits a homomorphism to $N$. The problem is polynomial time solvable if $N$ has a loop or has no circuits of odd length, and is otherwise $\rm{NP}$-complete. We also get dichotomies for the list, extension, and retraction versions of the problem.
期刊介绍:
The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.