{"title":"马尔可夫链蒙特卡罗方法分析数据采集过程中的响应模式","authors":"Y. H. Chun, E. Watson","doi":"10.1080/03155986.2023.2245304","DOIUrl":null,"url":null,"abstract":"Abstract Survey research, such as telephone, mail, or online questionnaires, is one of the most widely used tools for collecting sample data. We are often interested in the total number of replies that would be received during a given time period. Many researchers have developed a wide variety of curve-fitting methods to predict the response rate of recipients over time. However, previous models are based on some assumptions that are hardly justified in practice. In this paper, a new response model is proposed that is based on meaningful parameters such as the ultimate response rate of questionnaire recipients, delay rate of respondents, and average delivery time of responses. To estimate those model parameters, we use the Markov chain Monte Carlo (MCMC) method, which is increasingly popular in the operational research community. With mail survey data in marketing research, we test our Bayesian response model and compare its performance with those of traditional curve-fitting models.","PeriodicalId":13645,"journal":{"name":"Infor","volume":"51 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Markov chain Monte Carlo approach to the analysis of response patterns in data collection process\",\"authors\":\"Y. H. Chun, E. Watson\",\"doi\":\"10.1080/03155986.2023.2245304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Survey research, such as telephone, mail, or online questionnaires, is one of the most widely used tools for collecting sample data. We are often interested in the total number of replies that would be received during a given time period. Many researchers have developed a wide variety of curve-fitting methods to predict the response rate of recipients over time. However, previous models are based on some assumptions that are hardly justified in practice. In this paper, a new response model is proposed that is based on meaningful parameters such as the ultimate response rate of questionnaire recipients, delay rate of respondents, and average delivery time of responses. To estimate those model parameters, we use the Markov chain Monte Carlo (MCMC) method, which is increasingly popular in the operational research community. With mail survey data in marketing research, we test our Bayesian response model and compare its performance with those of traditional curve-fitting models.\",\"PeriodicalId\":13645,\"journal\":{\"name\":\"Infor\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infor\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/03155986.2023.2245304\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infor","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/03155986.2023.2245304","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Markov chain Monte Carlo approach to the analysis of response patterns in data collection process
Abstract Survey research, such as telephone, mail, or online questionnaires, is one of the most widely used tools for collecting sample data. We are often interested in the total number of replies that would be received during a given time period. Many researchers have developed a wide variety of curve-fitting methods to predict the response rate of recipients over time. However, previous models are based on some assumptions that are hardly justified in practice. In this paper, a new response model is proposed that is based on meaningful parameters such as the ultimate response rate of questionnaire recipients, delay rate of respondents, and average delivery time of responses. To estimate those model parameters, we use the Markov chain Monte Carlo (MCMC) method, which is increasingly popular in the operational research community. With mail survey data in marketing research, we test our Bayesian response model and compare its performance with those of traditional curve-fitting models.
期刊介绍:
INFOR: Information Systems and Operational Research is published and sponsored by the Canadian Operational Research Society. It provides its readers with papers on a powerful combination of subjects: Information Systems and Operational Research. The importance of combining IS and OR in one journal is that both aim to expand quantitative scientific approaches to management. With this integration, the theory, methodology, and practice of OR and IS are thoroughly examined. INFOR is available in print and online.