Prasad Vernekar, Nithin Kumar Yernad Balachandra, V. M. Harishchandra
{"title":"具有增强低电压读写能力的自定时SRAM阵列","authors":"Prasad Vernekar, Nithin Kumar Yernad Balachandra, V. M. Harishchandra","doi":"10.1109/ISVLSI.2019.00117","DOIUrl":null,"url":null,"abstract":"The scaling of technology resulted in shrinking of device sizes, however suffers from threshold variation. These variations impact the performance and stability of static random access memory (SRAM). The proposed work takes the advantage of the conventional Replica-Bit-Line (RBL) technique to design a self-timed SRAM control circuit which keeps track of timing variations and generated control signals. A variable wordline scheme is proposed to ensure successful read and write operation of SRAM at low voltages. The 2 Kb (2048 bits) SRAM designed in 65 nm UMC technology, operates with clock frequency reaching upto 1 GHz at the nominal supply voltage of 1.2 V and at 50 MHz with the supply voltage of 0.58 V. The variations in the Sense Amplifier Enable (SAE) generation are reduced upto 92% compared to the conventional RBL technique.","PeriodicalId":6703,"journal":{"name":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","volume":"46 1","pages":"627-631"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self Timed SRAM Array with Enhanced low Voltage Read and Write Capability\",\"authors\":\"Prasad Vernekar, Nithin Kumar Yernad Balachandra, V. M. Harishchandra\",\"doi\":\"10.1109/ISVLSI.2019.00117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scaling of technology resulted in shrinking of device sizes, however suffers from threshold variation. These variations impact the performance and stability of static random access memory (SRAM). The proposed work takes the advantage of the conventional Replica-Bit-Line (RBL) technique to design a self-timed SRAM control circuit which keeps track of timing variations and generated control signals. A variable wordline scheme is proposed to ensure successful read and write operation of SRAM at low voltages. The 2 Kb (2048 bits) SRAM designed in 65 nm UMC technology, operates with clock frequency reaching upto 1 GHz at the nominal supply voltage of 1.2 V and at 50 MHz with the supply voltage of 0.58 V. The variations in the Sense Amplifier Enable (SAE) generation are reduced upto 92% compared to the conventional RBL technique.\",\"PeriodicalId\":6703,\"journal\":{\"name\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"volume\":\"46 1\",\"pages\":\"627-631\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2019.00117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2019.00117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self Timed SRAM Array with Enhanced low Voltage Read and Write Capability
The scaling of technology resulted in shrinking of device sizes, however suffers from threshold variation. These variations impact the performance and stability of static random access memory (SRAM). The proposed work takes the advantage of the conventional Replica-Bit-Line (RBL) technique to design a self-timed SRAM control circuit which keeps track of timing variations and generated control signals. A variable wordline scheme is proposed to ensure successful read and write operation of SRAM at low voltages. The 2 Kb (2048 bits) SRAM designed in 65 nm UMC technology, operates with clock frequency reaching upto 1 GHz at the nominal supply voltage of 1.2 V and at 50 MHz with the supply voltage of 0.58 V. The variations in the Sense Amplifier Enable (SAE) generation are reduced upto 92% compared to the conventional RBL technique.