J. Sonntag, M. Goldsche, T. Khodkov, G. Verbiest, Sven Reichardt, Nils von den Driesch, D. Buca, C. Stampfer
{"title":"微机电系统在悬浮石墨烯中的工程可调应变场","authors":"J. Sonntag, M. Goldsche, T. Khodkov, G. Verbiest, Sven Reichardt, Nils von den Driesch, D. Buca, C. Stampfer","doi":"10.1109/TRANSDUCERS.2019.8808807","DOIUrl":null,"url":null,"abstract":"Here, we present a micro-electromechanical system (MEMS) for the investigation of the electromechanical coupling in graphene and potentially related 2D materials. Key innovations of our technique include: (1) the integration of graphene into silicon-MEMS technology; (2) full control over induced strain fields and doping levels within the graphene membrane and their characterization via spatially resolved confocal Raman spectroscopy; and (3) the ability to detect the mechanical coupling of the graphene sheet to the MEMS device with via their mechanical resonator eigenfrequencies.","PeriodicalId":6672,"journal":{"name":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","volume":"31 1","pages":"266-269"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Engineering Tunable Strain Fields in Suspended Graphene by Microelectromechanical Systems\",\"authors\":\"J. Sonntag, M. Goldsche, T. Khodkov, G. Verbiest, Sven Reichardt, Nils von den Driesch, D. Buca, C. Stampfer\",\"doi\":\"10.1109/TRANSDUCERS.2019.8808807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we present a micro-electromechanical system (MEMS) for the investigation of the electromechanical coupling in graphene and potentially related 2D materials. Key innovations of our technique include: (1) the integration of graphene into silicon-MEMS technology; (2) full control over induced strain fields and doping levels within the graphene membrane and their characterization via spatially resolved confocal Raman spectroscopy; and (3) the ability to detect the mechanical coupling of the graphene sheet to the MEMS device with via their mechanical resonator eigenfrequencies.\",\"PeriodicalId\":6672,\"journal\":{\"name\":\"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)\",\"volume\":\"31 1\",\"pages\":\"266-269\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2019.8808807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2019.8808807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Engineering Tunable Strain Fields in Suspended Graphene by Microelectromechanical Systems
Here, we present a micro-electromechanical system (MEMS) for the investigation of the electromechanical coupling in graphene and potentially related 2D materials. Key innovations of our technique include: (1) the integration of graphene into silicon-MEMS technology; (2) full control over induced strain fields and doping levels within the graphene membrane and their characterization via spatially resolved confocal Raman spectroscopy; and (3) the ability to detect the mechanical coupling of the graphene sheet to the MEMS device with via their mechanical resonator eigenfrequencies.