利用热压键合在硅互连织物中进行电力输送和热提取的PowerTherm附加工艺

Pranav Ambhore, U. Mogera, Boris Vaisband, Ujash Shah, T. Fisher, M. Goorsky, S. Iyer
{"title":"利用热压键合在硅互连织物中进行电力输送和热提取的PowerTherm附加工艺","authors":"Pranav Ambhore, U. Mogera, Boris Vaisband, Ujash Shah, T. Fisher, M. Goorsky, S. Iyer","doi":"10.1109/ECTC.2019.00247","DOIUrl":null,"url":null,"abstract":"High-density placement of dies on the Silicon Interconnect Fabric (Si-IF) demands high power delivery (1 W/mm2) which in turn generates intense heat (~0.5-0.7 W/mm2). To meet this power requirement and manage its thermal dissipation, we have introduced a novel architecture called PowerTherm which involves the attachment of electrically isolated copper terminal blocks to the back side of the Si-IF. The terminal blocks perform a dual function: they deliver high current at mission voltage and cool the Si-IF either passively or actively. This paper deals with PowerTherm bonding process and its characterization. The terminal blocks were attached to electrodeposited Cu on Si using thermocompression bonding in atmospheric conditions, however with confined air flow. Shear strength of ~ 17 MPa was achieved when the bonding was performed at the optimized conditions.","PeriodicalId":6726,"journal":{"name":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","volume":"30 1","pages":"1605-1610"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PowerTherm Attach Process for Power Delivery and Heat Extraction in the Silicon-Interconnect Fabric Using Thermocompression Bonding\",\"authors\":\"Pranav Ambhore, U. Mogera, Boris Vaisband, Ujash Shah, T. Fisher, M. Goorsky, S. Iyer\",\"doi\":\"10.1109/ECTC.2019.00247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-density placement of dies on the Silicon Interconnect Fabric (Si-IF) demands high power delivery (1 W/mm2) which in turn generates intense heat (~0.5-0.7 W/mm2). To meet this power requirement and manage its thermal dissipation, we have introduced a novel architecture called PowerTherm which involves the attachment of electrically isolated copper terminal blocks to the back side of the Si-IF. The terminal blocks perform a dual function: they deliver high current at mission voltage and cool the Si-IF either passively or actively. This paper deals with PowerTherm bonding process and its characterization. The terminal blocks were attached to electrodeposited Cu on Si using thermocompression bonding in atmospheric conditions, however with confined air flow. Shear strength of ~ 17 MPa was achieved when the bonding was performed at the optimized conditions.\",\"PeriodicalId\":6726,\"journal\":{\"name\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"volume\":\"30 1\",\"pages\":\"1605-1610\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2019.00247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 69th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2019.00247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在硅互连结构(Si-IF)上高密度放置模具需要高功率输出(1 W/mm2),从而产生强烈的热量(~0.5-0.7 W/mm2)。为了满足这种功率要求并管理其散热,我们引入了一种称为PowerTherm的新架构,该架构涉及将电隔离的铜端子连接到Si-IF的背面。端子块执行双重功能:它们在任务电压下提供大电流,并被动或主动冷却Si-IF。本文研究了PowerTherm键合工艺及其表征。在大气条件下,使用热压键合将端子块连接到电沉积在Si上的Cu上,但是空气流动受限。在优化条件下进行粘接,得到了~ 17 MPa的剪切强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PowerTherm Attach Process for Power Delivery and Heat Extraction in the Silicon-Interconnect Fabric Using Thermocompression Bonding
High-density placement of dies on the Silicon Interconnect Fabric (Si-IF) demands high power delivery (1 W/mm2) which in turn generates intense heat (~0.5-0.7 W/mm2). To meet this power requirement and manage its thermal dissipation, we have introduced a novel architecture called PowerTherm which involves the attachment of electrically isolated copper terminal blocks to the back side of the Si-IF. The terminal blocks perform a dual function: they deliver high current at mission voltage and cool the Si-IF either passively or actively. This paper deals with PowerTherm bonding process and its characterization. The terminal blocks were attached to electrodeposited Cu on Si using thermocompression bonding in atmospheric conditions, however with confined air flow. Shear strength of ~ 17 MPa was achieved when the bonding was performed at the optimized conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信