猛禽代码在GPU上的实现与评价

Linjia Hu, S. Nooshabadi, T. Mladenov
{"title":"猛禽代码在GPU上的实现与评价","authors":"Linjia Hu, S. Nooshabadi, T. Mladenov","doi":"10.1109/ISCE.2012.6241735","DOIUrl":null,"url":null,"abstract":"Raptor code, a member of the fountain code family, is a significant theoretical improvement over the Luby transform code (LT code) for forward error correction (FEC) transmission. Graphics processing units (GPUs) have become a common place in the consumer market and are finding their way beyond graphics processing into general purpose computing. This paper investigates the suitability of GPU for Raptor code to process large block and symbol sizes in FEC transmission. The serial and parallel implementations of Raptor code are explored on CPU and GPU, respectively. Our work show that the efficient parallelization on the GPU can improve the performance of the decoder significantly by a factor of up to 46. Furthermore, to understand the performance bottlenecks of Raptor code on both the GPU and CPU platforms, the decoding speed is evaluated in different block and symbol sizes.","PeriodicalId":6297,"journal":{"name":"2012 IEEE 16th International Symposium on Consumer Electronics","volume":"26 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Implementation and evaluation of Raptor code on GPU\",\"authors\":\"Linjia Hu, S. Nooshabadi, T. Mladenov\",\"doi\":\"10.1109/ISCE.2012.6241735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Raptor code, a member of the fountain code family, is a significant theoretical improvement over the Luby transform code (LT code) for forward error correction (FEC) transmission. Graphics processing units (GPUs) have become a common place in the consumer market and are finding their way beyond graphics processing into general purpose computing. This paper investigates the suitability of GPU for Raptor code to process large block and symbol sizes in FEC transmission. The serial and parallel implementations of Raptor code are explored on CPU and GPU, respectively. Our work show that the efficient parallelization on the GPU can improve the performance of the decoder significantly by a factor of up to 46. Furthermore, to understand the performance bottlenecks of Raptor code on both the GPU and CPU platforms, the decoding speed is evaluated in different block and symbol sizes.\",\"PeriodicalId\":6297,\"journal\":{\"name\":\"2012 IEEE 16th International Symposium on Consumer Electronics\",\"volume\":\"26 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 16th International Symposium on Consumer Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCE.2012.6241735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 16th International Symposium on Consumer Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCE.2012.6241735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

Raptor码是喷泉码家族的一员,是对Luby变换码(LT码)进行前向纠错(FEC)传输的重要理论改进。图形处理单元(gpu)已经成为消费市场上的一个常见地方,并且正在寻找超越图形处理进入通用计算的方法。本文研究了GPU对Raptor代码在FEC传输中处理大块和符号大小的适用性。研究了Raptor代码在CPU和GPU上的串行和并行实现。我们的工作表明,GPU上的高效并行化可以显着提高解码器的性能,最高可达46倍。此外,为了了解GPU和CPU平台上Raptor代码的性能瓶颈,解码速度在不同的块和符号大小下进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation and evaluation of Raptor code on GPU
Raptor code, a member of the fountain code family, is a significant theoretical improvement over the Luby transform code (LT code) for forward error correction (FEC) transmission. Graphics processing units (GPUs) have become a common place in the consumer market and are finding their way beyond graphics processing into general purpose computing. This paper investigates the suitability of GPU for Raptor code to process large block and symbol sizes in FEC transmission. The serial and parallel implementations of Raptor code are explored on CPU and GPU, respectively. Our work show that the efficient parallelization on the GPU can improve the performance of the decoder significantly by a factor of up to 46. Furthermore, to understand the performance bottlenecks of Raptor code on both the GPU and CPU platforms, the decoding speed is evaluated in different block and symbol sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信