支票OCR系统中印刷和手写字符的区别

Weiran Xu, Honggang Zhang, Jun Guo, Guang Chen
{"title":"支票OCR系统中印刷和手写字符的区别","authors":"Weiran Xu, Honggang Zhang, Jun Guo, Guang Chen","doi":"10.1109/ICMLC.2002.1174543","DOIUrl":null,"url":null,"abstract":"The identification of printed and handwritten characters is a fundamental and important issue for the cheque OCR system to achieve high-accuracy. In this paper, a novel method is presented to identify the written type based on only 4 or 5 characters in a severely corrupted bank cheque image. We first extract 4 kinds of features, totaling 17 features. Then the most suitable features are selected using the method based on separability measure. Finally, the selected features are used by a naive Bayesian classifier to realize the discrimination. Using 12,158 real checks to test our method, the accuracy is 99.2%.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"11 1","pages":"1048-1053 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Discrimination between printed and handwritten characters for cheque OCR system\",\"authors\":\"Weiran Xu, Honggang Zhang, Jun Guo, Guang Chen\",\"doi\":\"10.1109/ICMLC.2002.1174543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The identification of printed and handwritten characters is a fundamental and important issue for the cheque OCR system to achieve high-accuracy. In this paper, a novel method is presented to identify the written type based on only 4 or 5 characters in a severely corrupted bank cheque image. We first extract 4 kinds of features, totaling 17 features. Then the most suitable features are selected using the method based on separability measure. Finally, the selected features are used by a naive Bayesian classifier to realize the discrimination. Using 12,158 real checks to test our method, the accuracy is 99.2%.\",\"PeriodicalId\":90702,\"journal\":{\"name\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"volume\":\"11 1\",\"pages\":\"1048-1053 vol.2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2002.1174543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1174543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

印刷和手写字符的识别是支票OCR系统实现高精度的基础和重要问题。本文提出了一种仅根据严重损坏的银行支票图像中的4或5个字符来识别书写类型的新方法。首先提取4种特征,共计17种特征。然后使用基于可分性度量的方法选择最合适的特征。最后,使用朴素贝叶斯分类器对选择的特征进行识别。使用12158个真实检测来测试我们的方法,准确率为99.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrimination between printed and handwritten characters for cheque OCR system
The identification of printed and handwritten characters is a fundamental and important issue for the cheque OCR system to achieve high-accuracy. In this paper, a novel method is presented to identify the written type based on only 4 or 5 characters in a severely corrupted bank cheque image. We first extract 4 kinds of features, totaling 17 features. Then the most suitable features are selected using the method based on separability measure. Finally, the selected features are used by a naive Bayesian classifier to realize the discrimination. Using 12,158 real checks to test our method, the accuracy is 99.2%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信