在PET三维成像中的组织学描述

Marios Poulos , Theodoros Felekis , Angeliki Poulou
{"title":"在PET三维成像中的组织学描述","authors":"Marios Poulos ,&nbsp;Theodoros Felekis ,&nbsp;Angeliki Poulou","doi":"10.1016/j.jmhi.2016.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this study we examine the possibility of constructing metadata from Positron Emission Tomography images based on a Radial Basis Function neural network, which uses histological data extracted via the enzyme-linked immunosorbent assay abbreviation. The aim of constructing such metadata is to achieve a bringing between the binding potential receptor <em>in vitro</em> and <em>in vivo</em> Positron Emission Tomography procedures, which it is possible to calculate using a classic simplified reference tissue model. This knowledge representation procedure may then be transmitted in the Positron Emission Tomography using the testing neural network procedure. The latest satisfies the primary aim of this study, which was to avoid painful and risky biopsies of patients.</p></div>","PeriodicalId":100803,"journal":{"name":"Journal of Medical Hypotheses and Ideas","volume":"9 2","pages":"Pages S14-S23"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jmhi.2016.01.001","citationCount":"0","resultStr":"{\"title\":\"Towards a histological depiction in 3D imaging PET\",\"authors\":\"Marios Poulos ,&nbsp;Theodoros Felekis ,&nbsp;Angeliki Poulou\",\"doi\":\"10.1016/j.jmhi.2016.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study we examine the possibility of constructing metadata from Positron Emission Tomography images based on a Radial Basis Function neural network, which uses histological data extracted via the enzyme-linked immunosorbent assay abbreviation. The aim of constructing such metadata is to achieve a bringing between the binding potential receptor <em>in vitro</em> and <em>in vivo</em> Positron Emission Tomography procedures, which it is possible to calculate using a classic simplified reference tissue model. This knowledge representation procedure may then be transmitted in the Positron Emission Tomography using the testing neural network procedure. The latest satisfies the primary aim of this study, which was to avoid painful and risky biopsies of patients.</p></div>\",\"PeriodicalId\":100803,\"journal\":{\"name\":\"Journal of Medical Hypotheses and Ideas\",\"volume\":\"9 2\",\"pages\":\"Pages S14-S23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jmhi.2016.01.001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Hypotheses and Ideas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2251729416000021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Hypotheses and Ideas","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2251729416000021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们研究了基于径向基函数神经网络从正电子发射断层扫描图像构建元数据的可能性,该网络使用通过酶联免疫吸附测定(简称酶联免疫吸附测定)提取的组织学数据。构建这种元数据的目的是实现结合电位受体在体外和体内正电子发射断层扫描程序之间的融合,这可以使用经典的简化参考组织模型进行计算。该知识表示过程可以在正电子发射断层扫描中使用测试神经网络过程进行传输。最新的方法满足了这项研究的主要目的,即避免患者进行痛苦和危险的活组织检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Towards a histological depiction in 3D imaging PET

Towards a histological depiction in 3D imaging PET

In this study we examine the possibility of constructing metadata from Positron Emission Tomography images based on a Radial Basis Function neural network, which uses histological data extracted via the enzyme-linked immunosorbent assay abbreviation. The aim of constructing such metadata is to achieve a bringing between the binding potential receptor in vitro and in vivo Positron Emission Tomography procedures, which it is possible to calculate using a classic simplified reference tissue model. This knowledge representation procedure may then be transmitted in the Positron Emission Tomography using the testing neural network procedure. The latest satisfies the primary aim of this study, which was to avoid painful and risky biopsies of patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信