Ishrat Jahan Biswas, Enrique Contreras Lopez, F. Ahmed, Jianzhi Li
{"title":"聚酰亚胺基板上导电图案的超快激光直写","authors":"Ishrat Jahan Biswas, Enrique Contreras Lopez, F. Ahmed, Jianzhi Li","doi":"10.1115/msec2022-85684","DOIUrl":null,"url":null,"abstract":"\n Laser direct writing (LDW) is a fast and cost-effective method for printing conductive patterns in flexible polymer substrates. The electrical, chemical, and mechanical properties of polyimide (PI) make it an attractive material choice for laser writing of conductive circuits in such polymer. Electrically insulating PI has shown great potential for flexible printed electronics as LDW enables selective carbonization in the bulk of such material leading to the formation of conductive lines. However, existing studies in this area reveal a few key limitations of this approach including limited conductivity of written structures and fragility of carbonized PI. Therefore, more research is required to overcome those limitations and reap the benefits of the LDW approach in writing flexible electronic circuits in PI. The proposed study investigates potential approaches to enhance the electrical conductivity of femtosecond laser written bulk carbon structures in PI films. Deposition of laser energy was varied by changing key process parameters such as pulse energy, pulse picker divider, and hatch distance of laser scan to maximize the conductively of the carbon structure. The experimental findings show a strong dependency of laser energy deposition on the conductivity carbon structures in PI films. To further enhance the electrical conductivity of laser written structures, the feasibility of adding copper microparticles to the PI solution and subsequent laser carbonization was studied. The proposed LDW of conductive lines has potential in flexible electronic circuits and sensing applications.","PeriodicalId":45459,"journal":{"name":"Journal of Micro and Nano-Manufacturing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast Laser Direct Writing of Conductive Patterns on Polyimide Substrate\",\"authors\":\"Ishrat Jahan Biswas, Enrique Contreras Lopez, F. Ahmed, Jianzhi Li\",\"doi\":\"10.1115/msec2022-85684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Laser direct writing (LDW) is a fast and cost-effective method for printing conductive patterns in flexible polymer substrates. The electrical, chemical, and mechanical properties of polyimide (PI) make it an attractive material choice for laser writing of conductive circuits in such polymer. Electrically insulating PI has shown great potential for flexible printed electronics as LDW enables selective carbonization in the bulk of such material leading to the formation of conductive lines. However, existing studies in this area reveal a few key limitations of this approach including limited conductivity of written structures and fragility of carbonized PI. Therefore, more research is required to overcome those limitations and reap the benefits of the LDW approach in writing flexible electronic circuits in PI. The proposed study investigates potential approaches to enhance the electrical conductivity of femtosecond laser written bulk carbon structures in PI films. Deposition of laser energy was varied by changing key process parameters such as pulse energy, pulse picker divider, and hatch distance of laser scan to maximize the conductively of the carbon structure. The experimental findings show a strong dependency of laser energy deposition on the conductivity carbon structures in PI films. To further enhance the electrical conductivity of laser written structures, the feasibility of adding copper microparticles to the PI solution and subsequent laser carbonization was studied. The proposed LDW of conductive lines has potential in flexible electronic circuits and sensing applications.\",\"PeriodicalId\":45459,\"journal\":{\"name\":\"Journal of Micro and Nano-Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro and Nano-Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2022-85684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Ultrafast Laser Direct Writing of Conductive Patterns on Polyimide Substrate
Laser direct writing (LDW) is a fast and cost-effective method for printing conductive patterns in flexible polymer substrates. The electrical, chemical, and mechanical properties of polyimide (PI) make it an attractive material choice for laser writing of conductive circuits in such polymer. Electrically insulating PI has shown great potential for flexible printed electronics as LDW enables selective carbonization in the bulk of such material leading to the formation of conductive lines. However, existing studies in this area reveal a few key limitations of this approach including limited conductivity of written structures and fragility of carbonized PI. Therefore, more research is required to overcome those limitations and reap the benefits of the LDW approach in writing flexible electronic circuits in PI. The proposed study investigates potential approaches to enhance the electrical conductivity of femtosecond laser written bulk carbon structures in PI films. Deposition of laser energy was varied by changing key process parameters such as pulse energy, pulse picker divider, and hatch distance of laser scan to maximize the conductively of the carbon structure. The experimental findings show a strong dependency of laser energy deposition on the conductivity carbon structures in PI films. To further enhance the electrical conductivity of laser written structures, the feasibility of adding copper microparticles to the PI solution and subsequent laser carbonization was studied. The proposed LDW of conductive lines has potential in flexible electronic circuits and sensing applications.
期刊介绍:
The Journal of Micro and Nano-Manufacturing provides a forum for the rapid dissemination of original theoretical and applied research in the areas of micro- and nano-manufacturing that are related to process innovation, accuracy, and precision, throughput enhancement, material utilization, compact equipment development, environmental and life-cycle analysis, and predictive modeling of manufacturing processes with feature sizes less than one hundred micrometers. Papers addressing special needs in emerging areas, such as biomedical devices, drug manufacturing, water and energy, are also encouraged. Areas of interest including, but not limited to: Unit micro- and nano-manufacturing processes; Hybrid manufacturing processes combining bottom-up and top-down processes; Hybrid manufacturing processes utilizing various energy sources (optical, mechanical, electrical, solar, etc.) to achieve multi-scale features and resolution; High-throughput micro- and nano-manufacturing processes; Equipment development; Predictive modeling and simulation of materials and/or systems enabling point-of-need or scaled-up micro- and nano-manufacturing; Metrology at the micro- and nano-scales over large areas; Sensors and sensor integration; Design algorithms for multi-scale manufacturing; Life cycle analysis; Logistics and material handling related to micro- and nano-manufacturing.