机器学习和可解释的人工智能在抑郁症预测中的进展

IF 0.7 Q3 COMPUTER SCIENCE, THEORY & METHODS
H. Byeon
{"title":"机器学习和可解释的人工智能在抑郁症预测中的进展","authors":"H. Byeon","doi":"10.14569/ijacsa.2023.0140656","DOIUrl":null,"url":null,"abstract":"There is a growing interest in applying AI technology in the field of mental health, particularly as an alternative to complement the limitations of human analysis, judgment, and accessibility in mental health assessments and treatments. The current mental health treatment service faces a gap in which individuals who need help are not receiving it due to negative perceptions of mental health treatment, lack of professional manpower, and physical accessibility limitations. To overcome these difficulties, there is a growing need for a new approach, and AI technology is being explored as a potential solution. Explainable artificial intelligence (X-AI) with both accuracy and interpretability technology can help improve the accuracy of expert decision-making, increase the accessibility of mental health services, and solve the psychological problems of high-risk groups of depression. In this review, we examine the current use of X-AI technology in mental health assessments for depression. As a result of reviewing 6 studies that used X-AI to discriminate high-risk groups of depression, various algorithms such as SHAP (SHapley Additive exPlanations) and Local Interpretable Model-Agnostic Explanation (LIME) were used for predicting depression. In the field of psychiatry, such as predicting depression, it is crucial to ensure AI prediction justifications are clear and transparent. Therefore, ensuring interpretability of AI models will be important in future research. Keywords—Depression; LIME; Explainable artificial intelligence; Machine learning; SHAP","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in Machine Learning and Explainable Artificial Intelligence for Depression Prediction\",\"authors\":\"H. Byeon\",\"doi\":\"10.14569/ijacsa.2023.0140656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a growing interest in applying AI technology in the field of mental health, particularly as an alternative to complement the limitations of human analysis, judgment, and accessibility in mental health assessments and treatments. The current mental health treatment service faces a gap in which individuals who need help are not receiving it due to negative perceptions of mental health treatment, lack of professional manpower, and physical accessibility limitations. To overcome these difficulties, there is a growing need for a new approach, and AI technology is being explored as a potential solution. Explainable artificial intelligence (X-AI) with both accuracy and interpretability technology can help improve the accuracy of expert decision-making, increase the accessibility of mental health services, and solve the psychological problems of high-risk groups of depression. In this review, we examine the current use of X-AI technology in mental health assessments for depression. As a result of reviewing 6 studies that used X-AI to discriminate high-risk groups of depression, various algorithms such as SHAP (SHapley Additive exPlanations) and Local Interpretable Model-Agnostic Explanation (LIME) were used for predicting depression. In the field of psychiatry, such as predicting depression, it is crucial to ensure AI prediction justifications are clear and transparent. Therefore, ensuring interpretability of AI models will be important in future research. Keywords—Depression; LIME; Explainable artificial intelligence; Machine learning; SHAP\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.0140656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

人们越来越有兴趣将人工智能技术应用于精神卫生领域,特别是作为一种替代方法,以补充人类在精神卫生评估和治疗方面的分析、判断和可及性的局限性。由于对心理健康治疗的负面看法、缺乏专业人力以及身体可及性的限制,目前的心理健康治疗服务面临着需要帮助的个人没有得到帮助的差距。为了克服这些困难,人们越来越需要一种新的方法,而人工智能技术正在被探索作为一种潜在的解决方案。兼具准确性和可解释性的可解释性人工智能(Explainable artificial intelligence, X-AI)有助于提高专家决策的准确性,增加心理健康服务的可及性,解决抑郁症高危人群的心理问题。在这篇综述中,我们研究了目前X-AI技术在抑郁症心理健康评估中的应用。通过回顾6项使用X-AI区分抑郁症高危人群的研究,我们使用了SHapley Additive exPlanations (SHapley Additive exPlanations)和Local Interpretable Model-Agnostic Explanation (LIME)等多种算法来预测抑郁症。在精神病学领域,比如预测抑郁症,确保人工智能预测的理由清晰透明是至关重要的。因此,确保人工智能模型的可解释性将是未来研究的重要内容。Keywords-Depression;酸橙;可解释的人工智能;机器学习;世鹏科技电子
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in Machine Learning and Explainable Artificial Intelligence for Depression Prediction
There is a growing interest in applying AI technology in the field of mental health, particularly as an alternative to complement the limitations of human analysis, judgment, and accessibility in mental health assessments and treatments. The current mental health treatment service faces a gap in which individuals who need help are not receiving it due to negative perceptions of mental health treatment, lack of professional manpower, and physical accessibility limitations. To overcome these difficulties, there is a growing need for a new approach, and AI technology is being explored as a potential solution. Explainable artificial intelligence (X-AI) with both accuracy and interpretability technology can help improve the accuracy of expert decision-making, increase the accessibility of mental health services, and solve the psychological problems of high-risk groups of depression. In this review, we examine the current use of X-AI technology in mental health assessments for depression. As a result of reviewing 6 studies that used X-AI to discriminate high-risk groups of depression, various algorithms such as SHAP (SHapley Additive exPlanations) and Local Interpretable Model-Agnostic Explanation (LIME) were used for predicting depression. In the field of psychiatry, such as predicting depression, it is crucial to ensure AI prediction justifications are clear and transparent. Therefore, ensuring interpretability of AI models will be important in future research. Keywords—Depression; LIME; Explainable artificial intelligence; Machine learning; SHAP
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
22.20%
发文量
519
期刊介绍: IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信