{"title":"镍钯催化烯烃聚合","authors":"Fuzhou Wang","doi":"10.19080/AJOP.2019.02.555585","DOIUrl":null,"url":null,"abstract":"The research of the ethylene and α-olefins polymerizations using late transition metal catalysts should be highlight for development of polyolefin materials during the past two decades [1-5], because polyolefin materials are tremendously important in daily life [6]. Branched polyolefins are generally produced by transition-metal catalyzed copolymerization. The physical properties of polyolefin materials can be dramatically affected by their microstructures, which are controlled by the catalyst structures and their catalytic behavior. Progress of molecular the catalysts of transition metal complexes during these three decades enabled control of stereochemistry of poly(α-olefin)s, control of molecular weight of polyethylene and poly(α-olefin) s, synthesis of block copolymers by living polymerization, and copolymerization with various comonomers including polar functionalized olefins [5]. Thus, the design and synthesis of novel transition metal catalyst has always been a research focus of the polyolefin research.","PeriodicalId":6991,"journal":{"name":"Academic Journal of Polymer Science","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nickel and Palladium Catalyzed Olefin Polymerization\",\"authors\":\"Fuzhou Wang\",\"doi\":\"10.19080/AJOP.2019.02.555585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research of the ethylene and α-olefins polymerizations using late transition metal catalysts should be highlight for development of polyolefin materials during the past two decades [1-5], because polyolefin materials are tremendously important in daily life [6]. Branched polyolefins are generally produced by transition-metal catalyzed copolymerization. The physical properties of polyolefin materials can be dramatically affected by their microstructures, which are controlled by the catalyst structures and their catalytic behavior. Progress of molecular the catalysts of transition metal complexes during these three decades enabled control of stereochemistry of poly(α-olefin)s, control of molecular weight of polyethylene and poly(α-olefin) s, synthesis of block copolymers by living polymerization, and copolymerization with various comonomers including polar functionalized olefins [5]. Thus, the design and synthesis of novel transition metal catalyst has always been a research focus of the polyolefin research.\",\"PeriodicalId\":6991,\"journal\":{\"name\":\"Academic Journal of Polymer Science\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Academic Journal of Polymer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19080/AJOP.2019.02.555585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Journal of Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19080/AJOP.2019.02.555585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nickel and Palladium Catalyzed Olefin Polymerization
The research of the ethylene and α-olefins polymerizations using late transition metal catalysts should be highlight for development of polyolefin materials during the past two decades [1-5], because polyolefin materials are tremendously important in daily life [6]. Branched polyolefins are generally produced by transition-metal catalyzed copolymerization. The physical properties of polyolefin materials can be dramatically affected by their microstructures, which are controlled by the catalyst structures and their catalytic behavior. Progress of molecular the catalysts of transition metal complexes during these three decades enabled control of stereochemistry of poly(α-olefin)s, control of molecular weight of polyethylene and poly(α-olefin) s, synthesis of block copolymers by living polymerization, and copolymerization with various comonomers including polar functionalized olefins [5]. Thus, the design and synthesis of novel transition metal catalyst has always been a research focus of the polyolefin research.