{"title":"5-FU负载聚乳酸-羟基乙酸纳米颗粒治疗肺癌的研究进展","authors":"Sankha Bhattacharya","doi":"10.31351/vol31iss1pp130-143","DOIUrl":null,"url":null,"abstract":"Non-Small Cell Lung Cancer (NSCLC) accounts for about 84% of all lung cancer types diagnosed so far. Every year, regardless of gender, the NSCLC targets many communities worldwide. 5-Fluorouracil (5-FU) is a uracil-analog anticancer compound. This drug tends to annihilate multiple tumour cells. But 5-FU's most significant obstacle is that it gets very easily metabolized in the blood, which eventually leads to lower anticancer activity. Therfore a perfect drug delivery system is needed to overcome all the associated challenges.\nIn this experiment, an attempt was made to prepare 5-FU loaded poly lactic-co-glycolic acid nanoparticles using solvent evaporation method and subsequently observed the effect of molecular weight of poly lactic-co-glycolic acid, loading of poly lactic-co-glycolic acid, sonication period on the cytotoxic effect of 10 % w/w 5-FU loaded PLGA nanoparticles against human A549 Isogenic cell line.\nIn this experiment, two points are more evident: first, poly lactic-co-glycolic acid has a major impact on 5-FU release due to higher degradation and rate of diffusion in nanoparticle solution; and second, nanoparticles with a larger surface area and smaller particle size have a lower half-maximal inhibitory concentration (IC50) value. The IC50 of all nanoparticles was significantly higher (p=0.0145) than that of the free 5-FU controlled group (8.34Nm). The cytotoxicity would be greater if the IC50 value was lower. Nanoparticles with an 18-minute sonication time was found to be more cytotoxic than those with PLGA nanoparticles containing 12% polyvinyl alcohol.\n In this experiment 10% w/w 5-FU loaded poly lactic-co-glycolic acid nanoparticles was prepared for laboratory research to translational research for the treatment of lung cancer.","PeriodicalId":14509,"journal":{"name":"Iraqi Journal of Pharmaceutical Sciences ( P-ISSN: 1683 - 3597 , E-ISSN : 2521 - 3512)","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Development of 5-FU Loaded poly lactic-co-glycolic acid Nanoparticles for Treatment of Lung Cancer\",\"authors\":\"Sankha Bhattacharya\",\"doi\":\"10.31351/vol31iss1pp130-143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-Small Cell Lung Cancer (NSCLC) accounts for about 84% of all lung cancer types diagnosed so far. Every year, regardless of gender, the NSCLC targets many communities worldwide. 5-Fluorouracil (5-FU) is a uracil-analog anticancer compound. This drug tends to annihilate multiple tumour cells. But 5-FU's most significant obstacle is that it gets very easily metabolized in the blood, which eventually leads to lower anticancer activity. Therfore a perfect drug delivery system is needed to overcome all the associated challenges.\\nIn this experiment, an attempt was made to prepare 5-FU loaded poly lactic-co-glycolic acid nanoparticles using solvent evaporation method and subsequently observed the effect of molecular weight of poly lactic-co-glycolic acid, loading of poly lactic-co-glycolic acid, sonication period on the cytotoxic effect of 10 % w/w 5-FU loaded PLGA nanoparticles against human A549 Isogenic cell line.\\nIn this experiment, two points are more evident: first, poly lactic-co-glycolic acid has a major impact on 5-FU release due to higher degradation and rate of diffusion in nanoparticle solution; and second, nanoparticles with a larger surface area and smaller particle size have a lower half-maximal inhibitory concentration (IC50) value. The IC50 of all nanoparticles was significantly higher (p=0.0145) than that of the free 5-FU controlled group (8.34Nm). The cytotoxicity would be greater if the IC50 value was lower. Nanoparticles with an 18-minute sonication time was found to be more cytotoxic than those with PLGA nanoparticles containing 12% polyvinyl alcohol.\\n In this experiment 10% w/w 5-FU loaded poly lactic-co-glycolic acid nanoparticles was prepared for laboratory research to translational research for the treatment of lung cancer.\",\"PeriodicalId\":14509,\"journal\":{\"name\":\"Iraqi Journal of Pharmaceutical Sciences ( P-ISSN: 1683 - 3597 , E-ISSN : 2521 - 3512)\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iraqi Journal of Pharmaceutical Sciences ( P-ISSN: 1683 - 3597 , E-ISSN : 2521 - 3512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31351/vol31iss1pp130-143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Pharmaceutical Sciences ( P-ISSN: 1683 - 3597 , E-ISSN : 2521 - 3512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31351/vol31iss1pp130-143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of 5-FU Loaded poly lactic-co-glycolic acid Nanoparticles for Treatment of Lung Cancer
Non-Small Cell Lung Cancer (NSCLC) accounts for about 84% of all lung cancer types diagnosed so far. Every year, regardless of gender, the NSCLC targets many communities worldwide. 5-Fluorouracil (5-FU) is a uracil-analog anticancer compound. This drug tends to annihilate multiple tumour cells. But 5-FU's most significant obstacle is that it gets very easily metabolized in the blood, which eventually leads to lower anticancer activity. Therfore a perfect drug delivery system is needed to overcome all the associated challenges.
In this experiment, an attempt was made to prepare 5-FU loaded poly lactic-co-glycolic acid nanoparticles using solvent evaporation method and subsequently observed the effect of molecular weight of poly lactic-co-glycolic acid, loading of poly lactic-co-glycolic acid, sonication period on the cytotoxic effect of 10 % w/w 5-FU loaded PLGA nanoparticles against human A549 Isogenic cell line.
In this experiment, two points are more evident: first, poly lactic-co-glycolic acid has a major impact on 5-FU release due to higher degradation and rate of diffusion in nanoparticle solution; and second, nanoparticles with a larger surface area and smaller particle size have a lower half-maximal inhibitory concentration (IC50) value. The IC50 of all nanoparticles was significantly higher (p=0.0145) than that of the free 5-FU controlled group (8.34Nm). The cytotoxicity would be greater if the IC50 value was lower. Nanoparticles with an 18-minute sonication time was found to be more cytotoxic than those with PLGA nanoparticles containing 12% polyvinyl alcohol.
In this experiment 10% w/w 5-FU loaded poly lactic-co-glycolic acid nanoparticles was prepared for laboratory research to translational research for the treatment of lung cancer.