{"title":"构造密集无网格线性3图","authors":"Lior Gishboliner, A. Shapira","doi":"10.1090/PROC/15673","DOIUrl":null,"url":null,"abstract":"We show that there exist linear $3$-uniform hypergraphs with $n$ vertices and $\\Omega(n^2)$ edges which contain no copy of the $3 \\times 3$ grid. This makes significant progress on a conjecture of F\\\"{u}redi and Ruszink\\'{o}. We also discuss connections to proving lower bounds for the $(9,6)$ Brown-Erd\\H{o}s-S\\'{o}s problem and to a problem of Solymosi and Solymosi.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Constructing dense grid-free linear 3-graphs\",\"authors\":\"Lior Gishboliner, A. Shapira\",\"doi\":\"10.1090/PROC/15673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that there exist linear $3$-uniform hypergraphs with $n$ vertices and $\\\\Omega(n^2)$ edges which contain no copy of the $3 \\\\times 3$ grid. This makes significant progress on a conjecture of F\\\\\\\"{u}redi and Ruszink\\\\'{o}. We also discuss connections to proving lower bounds for the $(9,6)$ Brown-Erd\\\\H{o}s-S\\\\'{o}s problem and to a problem of Solymosi and Solymosi.\",\"PeriodicalId\":8442,\"journal\":{\"name\":\"arXiv: Combinatorics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PROC/15673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PROC/15673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
摘要
我们证明了存在具有$n$顶点和$\Omega(n^2)$边的线性$3$-均匀超图,它不包含$3 \乘以3$网格的副本。这在F\ \ {u}redi和Ruszink\ \ {o}的一个猜想上取得了重大进展。我们还讨论了$(9,6)$ Brown-Erd\H{o} - s \'{o}s问题下界的证明以及关于Solymosi和Solymosi问题的证明的联系。
We show that there exist linear $3$-uniform hypergraphs with $n$ vertices and $\Omega(n^2)$ edges which contain no copy of the $3 \times 3$ grid. This makes significant progress on a conjecture of F\"{u}redi and Ruszink\'{o}. We also discuss connections to proving lower bounds for the $(9,6)$ Brown-Erd\H{o}s-S\'{o}s problem and to a problem of Solymosi and Solymosi.