广义系统的混合耗散控制与扰动抑制

IF 0.7 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Fang Gao, Wenbin Chen
{"title":"广义系统的混合耗散控制与扰动抑制","authors":"Fang Gao, Wenbin Chen","doi":"10.20965/jaciii.2023.p0720","DOIUrl":null,"url":null,"abstract":"In this study, for a linear singular system, the dissipativity and disturbance-rejection problems are considered simultaneously. An improved equivalent-input-disturbance (IEID) method has shown good disturbance-rejection performance for linear systems. Therefore, the objective of this study is to obtain a satisfactory disturbance-rejection performance and dissipativity performance level based on the IEID method for singular systems. First, the influence of exogenous disturbances on the system is estimated based on the IEID method. The estimate is added to the control input channel to offset this influence. A necessary and sufficient condition is obtained to ensure that the singular system is admissible and satisfies dissipativity performance level. Subsequently, a state-feedback controller is designed based on the admissibility condition. Finally, a numerical example is used to demonstrate the validity of the proposed method.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"54 1","pages":"720-725"},"PeriodicalIF":0.7000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed Dissipativity Control and Disturbance Rejection for Singular Systems\",\"authors\":\"Fang Gao, Wenbin Chen\",\"doi\":\"10.20965/jaciii.2023.p0720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, for a linear singular system, the dissipativity and disturbance-rejection problems are considered simultaneously. An improved equivalent-input-disturbance (IEID) method has shown good disturbance-rejection performance for linear systems. Therefore, the objective of this study is to obtain a satisfactory disturbance-rejection performance and dissipativity performance level based on the IEID method for singular systems. First, the influence of exogenous disturbances on the system is estimated based on the IEID method. The estimate is added to the control input channel to offset this influence. A necessary and sufficient condition is obtained to ensure that the singular system is admissible and satisfies dissipativity performance level. Subsequently, a state-feedback controller is designed based on the admissibility condition. Finally, a numerical example is used to demonstrate the validity of the proposed method.\",\"PeriodicalId\":45921,\"journal\":{\"name\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"volume\":\"54 1\",\"pages\":\"720-725\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jaciii.2023.p0720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

对于一个线性奇异系统,同时考虑了系统的耗散和抗扰问题。一种改进的等效输入干扰(IEID)方法对线性系统具有良好的抗干扰性能。因此,本研究的目标是基于奇异系统的IEID方法获得令人满意的抗干扰性能和耗散性能水平。首先,基于IEID方法估计外源干扰对系统的影响。将估计值添加到控制输入通道中以抵消这种影响。得到了奇异系统允许且满足耗散性能水平的充分必要条件。然后,根据容许条件设计了状态反馈控制器。最后,通过一个算例验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed Dissipativity Control and Disturbance Rejection for Singular Systems
In this study, for a linear singular system, the dissipativity and disturbance-rejection problems are considered simultaneously. An improved equivalent-input-disturbance (IEID) method has shown good disturbance-rejection performance for linear systems. Therefore, the objective of this study is to obtain a satisfactory disturbance-rejection performance and dissipativity performance level based on the IEID method for singular systems. First, the influence of exogenous disturbances on the system is estimated based on the IEID method. The estimate is added to the control input channel to offset this influence. A necessary and sufficient condition is obtained to ensure that the singular system is admissible and satisfies dissipativity performance level. Subsequently, a state-feedback controller is designed based on the admissibility condition. Finally, a numerical example is used to demonstrate the validity of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
89
期刊介绍: JACIII focuses on advanced computational intelligence and intelligent informatics. The topics include, but are not limited to; Fuzzy logic, Fuzzy control, Neural Networks, GA and Evolutionary Computation, Hybrid Systems, Adaptation and Learning Systems, Distributed Intelligent Systems, Network systems, Multi-media, Human interface, Biologically inspired evolutionary systems, Artificial life, Chaos, Complex systems, Fractals, Robotics, Medical applications, Pattern recognition, Virtual reality, Wavelet analysis, Scientific applications, Industrial applications, and Artistic applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信