基于拓扑描述符的芳香胺定量构效关系研究

P.P.Singh, A. Prajapati
{"title":"基于拓扑描述符的芳香胺定量构效关系研究","authors":"P.P.Singh, A. Prajapati","doi":"10.24214/jcbps.a.8.3.39299","DOIUrl":null,"url":null,"abstract":"QSAR study of 29 aniline derivatives whose carcinogenic activities are reported in terms of log P has been made. QSAR models have been developed with the help of descriptors,connectivity index,valence connectivity index,shape index,molecularweight,accessibility surface area andmolar refractivity. Thirty-eight models have been found to have high degree of predictive power with regression coefficient above 0.9 and 12models above 0.9597. The combination of descriptors providing the best model is log P,valence connectivity index,shape index and molecular weight.","PeriodicalId":19541,"journal":{"name":"Organic Chemistry: An Indian Journal","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological descriptors based quantitative structure activity relationship study of aromatic amines\",\"authors\":\"P.P.Singh, A. Prajapati\",\"doi\":\"10.24214/jcbps.a.8.3.39299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"QSAR study of 29 aniline derivatives whose carcinogenic activities are reported in terms of log P has been made. QSAR models have been developed with the help of descriptors,connectivity index,valence connectivity index,shape index,molecularweight,accessibility surface area andmolar refractivity. Thirty-eight models have been found to have high degree of predictive power with regression coefficient above 0.9 and 12models above 0.9597. The combination of descriptors providing the best model is log P,valence connectivity index,shape index and molecular weight.\",\"PeriodicalId\":19541,\"journal\":{\"name\":\"Organic Chemistry: An Indian Journal\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Chemistry: An Indian Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24214/jcbps.a.8.3.39299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry: An Indian Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24214/jcbps.a.8.3.39299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对29种以log P表示致癌活性的苯胺衍生物进行了QSAR研究。利用描述符、连通性指数、价连通性指数、形状指数、分子量、可及性表面积和摩尔折射率建立了QSAR模型。回归系数在0.9以上的模型有38个,回归系数在0.9597以上的模型有12个。提供最佳模型的描述符组合是log P、价连通性指数、形状指数和分子量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological descriptors based quantitative structure activity relationship study of aromatic amines
QSAR study of 29 aniline derivatives whose carcinogenic activities are reported in terms of log P has been made. QSAR models have been developed with the help of descriptors,connectivity index,valence connectivity index,shape index,molecularweight,accessibility surface area andmolar refractivity. Thirty-eight models have been found to have high degree of predictive power with regression coefficient above 0.9 and 12models above 0.9597. The combination of descriptors providing the best model is log P,valence connectivity index,shape index and molecular weight.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信