倒立摆摆起与稳定的非线性控制

F. Ying
{"title":"倒立摆摆起与稳定的非线性控制","authors":"F. Ying","doi":"10.9746/sicetr1965.34.e1","DOIUrl":null,"url":null,"abstract":"In this paper, we studied swing-up and stabilization problems for an inverted pendulum. An effective control method of stabilizing an inverted pendulum system without resorting to any approximation of each nonlinear term appearing in mathematical models is presented. The key idea was to derive a partially linearized system using the coordinate change and input transformation via the Lie theoretic approach. On the other hand, we proposed a nonlinear state feedback control law to regulate the swinging energy of the pendulum system.","PeriodicalId":60146,"journal":{"name":"组合机床与自动化加工技术","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonlinear control of swing-up and stabilization of an inverted pendulum\",\"authors\":\"F. Ying\",\"doi\":\"10.9746/sicetr1965.34.e1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we studied swing-up and stabilization problems for an inverted pendulum. An effective control method of stabilizing an inverted pendulum system without resorting to any approximation of each nonlinear term appearing in mathematical models is presented. The key idea was to derive a partially linearized system using the coordinate change and input transformation via the Lie theoretic approach. On the other hand, we proposed a nonlinear state feedback control law to regulate the swinging energy of the pendulum system.\",\"PeriodicalId\":60146,\"journal\":{\"name\":\"组合机床与自动化加工技术\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"组合机床与自动化加工技术\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.9746/sicetr1965.34.e1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"组合机床与自动化加工技术","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.9746/sicetr1965.34.e1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了倒立摆的起摆和镇定问题。提出了一种不需要对数学模型中出现的每一个非线性项进行逼近而使倒立摆系统稳定的有效控制方法。其核心思想是通过李论方法利用坐标变化和输入变换推导出部分线性化的系统。另一方面,提出了一种非线性状态反馈控制律来调节摆系统的摆动能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear control of swing-up and stabilization of an inverted pendulum
In this paper, we studied swing-up and stabilization problems for an inverted pendulum. An effective control method of stabilizing an inverted pendulum system without resorting to any approximation of each nonlinear term appearing in mathematical models is presented. The key idea was to derive a partially linearized system using the coordinate change and input transformation via the Lie theoretic approach. On the other hand, we proposed a nonlinear state feedback control law to regulate the swinging energy of the pendulum system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
13764
期刊介绍: ZUHE JICHUANG YU ZIDONGHUAJIAGONGJISHU was founded in 1959, by the China Association of Science and Technology, China Mechanical Engineering society and Dalian Combined machine tool Research Institute co-sponsored, is a domestic and foreign public mechanical engineering academic journal. Main columns: Design and research, control and testing, process and equipment, special review, advanced management technology Information included: Chinese core periodical Core journal of Chinese science and technology High quality journals in Mechanical Engineering (Level T3) Science and Technology Journals World Impact Index (WJCI) Chinese science and technology paper statistical source journal RCCSE China core academic journal Journals are included in INSPEC, AJ and JST databases Chinese academic journals Comprehensive evaluation database source journals Full-text journals are included in China Academic Journal Abstract, China Journal Network, China Academic Journal (optical disc edition), Wanfang digital journal Group, China Core Journal (Selection) Database, etc
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信