大规模3D点云的反射去除

J. Yun, Jae-Young Sim
{"title":"大规模3D点云的反射去除","authors":"J. Yun, Jae-Young Sim","doi":"10.1109/CVPR.2018.00483","DOIUrl":null,"url":null,"abstract":"Large-scale 3D point clouds (LS3DPCs) captured by terrestrial LiDAR scanners often exhibit reflection artifacts by glasses, which degrade the performance of related computer vision techniques. In this paper, we propose an efficient reflection removal algorithm for LS3DPCs. We first partition the unit sphere into local surface patches which are then classified into the ordinary patches and the glass patches according to the number of echo pulses from emitted laser pulses. Then we estimate the glass region of dominant reflection artifacts by measuring the reliability. We also detect and remove the virtual points using the conditions of the reflection symmetry and the geometric similarity. We test the performance of the proposed algorithm on LS3DPCs capturing real-world outdoor scenes, and show that the proposed algorithm estimates valid glass regions faithfully and removes the virtual points caused by reflection artifacts successfully.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Reflection Removal for Large-Scale 3D Point Clouds\",\"authors\":\"J. Yun, Jae-Young Sim\",\"doi\":\"10.1109/CVPR.2018.00483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large-scale 3D point clouds (LS3DPCs) captured by terrestrial LiDAR scanners often exhibit reflection artifacts by glasses, which degrade the performance of related computer vision techniques. In this paper, we propose an efficient reflection removal algorithm for LS3DPCs. We first partition the unit sphere into local surface patches which are then classified into the ordinary patches and the glass patches according to the number of echo pulses from emitted laser pulses. Then we estimate the glass region of dominant reflection artifacts by measuring the reliability. We also detect and remove the virtual points using the conditions of the reflection symmetry and the geometric similarity. We test the performance of the proposed algorithm on LS3DPCs capturing real-world outdoor scenes, and show that the proposed algorithm estimates valid glass regions faithfully and removes the virtual points caused by reflection artifacts successfully.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

地面激光雷达扫描仪捕获的大规模3D点云(ls3dpc)通常会出现眼镜反射伪影,从而降低了相关计算机视觉技术的性能。本文提出了一种有效的LS3DPCs反射去除算法。首先将单位球体划分为局部表面斑块,然后根据激光脉冲的回波脉冲数将其划分为普通斑块和玻璃斑块。然后通过测量可靠性来估计主反射伪影的玻璃区域。利用反射对称和几何相似条件检测和去除虚点。我们在捕捉真实室外场景的ls3dpc上测试了该算法的性能,结果表明,该算法能够真实地估计有效的玻璃区域,并成功地消除了反射伪影引起的虚拟点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reflection Removal for Large-Scale 3D Point Clouds
Large-scale 3D point clouds (LS3DPCs) captured by terrestrial LiDAR scanners often exhibit reflection artifacts by glasses, which degrade the performance of related computer vision techniques. In this paper, we propose an efficient reflection removal algorithm for LS3DPCs. We first partition the unit sphere into local surface patches which are then classified into the ordinary patches and the glass patches according to the number of echo pulses from emitted laser pulses. Then we estimate the glass region of dominant reflection artifacts by measuring the reliability. We also detect and remove the virtual points using the conditions of the reflection symmetry and the geometric similarity. We test the performance of the proposed algorithm on LS3DPCs capturing real-world outdoor scenes, and show that the proposed algorithm estimates valid glass regions faithfully and removes the virtual points caused by reflection artifacts successfully.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信