一种基于finfet的现场可编程突触阵列(FPSA),可用于EDGE AI的一次学习

J. L. Kuo, H. W. Chen, E. Hsieh, S. Chung, T. P. Chen, S. A. Huang, J. Chen, O. Cheng
{"title":"一种基于finfet的现场可编程突触阵列(FPSA),可用于EDGE AI的一次学习","authors":"J. L. Kuo, H. W. Chen, E. Hsieh, S. Chung, T. P. Chen, S. A. Huang, J. Chen, O. Cheng","doi":"10.1109/VLSIT.2018.8510706","DOIUrl":null,"url":null,"abstract":"A pure logic 14nm FinFET with capabilities of linearly tunable Vth and excellent retention has been implemented as synapses in neuromorphic system. For the first time, a Field Programmable Synapse Array (FPSA) has been adopted to replace conventional R-based memory Synapse Array (RSA). Thanks to the wide range of Vt-tuning ability, 200X on/off ratio, and the ultra-small variability, 12%, results showed that the training power and SN ratio of FPSA are 10 times and 50 times smaller than those of the RSA, respectively. Two applications were demonstrated on FPSA array for one-shot learning applications. First, FPSA is used to detect handwritten digits of MNIST dataset. \"Learned it by once\" can be achieved in this task. Furthermore, FPSA has been applied to recognize goldfish in Cifar 100 dataset after learned the other 4 fish species. With the assistance from one-shot learning, results show the machine learned it faster and better on EDGE. This demonstrates the feasibility of FPSA for low-power and cost-effective synapse-based one-shot learning applications in the AIoT era.","PeriodicalId":6561,"journal":{"name":"2018 IEEE Symposium on VLSI Technology","volume":"69 1-3 1","pages":"29-30"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Energy Efficient FinFET-based Field Programmable Synapse Array (FPSA) Feasible for One-shot Learning on EDGE AI\",\"authors\":\"J. L. Kuo, H. W. Chen, E. Hsieh, S. Chung, T. P. Chen, S. A. Huang, J. Chen, O. Cheng\",\"doi\":\"10.1109/VLSIT.2018.8510706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A pure logic 14nm FinFET with capabilities of linearly tunable Vth and excellent retention has been implemented as synapses in neuromorphic system. For the first time, a Field Programmable Synapse Array (FPSA) has been adopted to replace conventional R-based memory Synapse Array (RSA). Thanks to the wide range of Vt-tuning ability, 200X on/off ratio, and the ultra-small variability, 12%, results showed that the training power and SN ratio of FPSA are 10 times and 50 times smaller than those of the RSA, respectively. Two applications were demonstrated on FPSA array for one-shot learning applications. First, FPSA is used to detect handwritten digits of MNIST dataset. \\\"Learned it by once\\\" can be achieved in this task. Furthermore, FPSA has been applied to recognize goldfish in Cifar 100 dataset after learned the other 4 fish species. With the assistance from one-shot learning, results show the machine learned it faster and better on EDGE. This demonstrates the feasibility of FPSA for low-power and cost-effective synapse-based one-shot learning applications in the AIoT era.\",\"PeriodicalId\":6561,\"journal\":{\"name\":\"2018 IEEE Symposium on VLSI Technology\",\"volume\":\"69 1-3 1\",\"pages\":\"29-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIT.2018.8510706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2018.8510706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

一个纯逻辑14nm FinFET具有线性可调的Vth和良好的保留能力,已被实现为神经形态系统中的突触。首次采用现场可编程突触阵列(FPSA)来取代传统的基于r的记忆突触阵列(RSA)。由于大范围的vt调谐能力、200X的开/关比和超小的12%变异性,结果表明,FPSA的训练功率和SN比分别比RSA小10倍和50倍。在FPSA阵列上演示了两种一次性学习应用。首先,利用FPSA对MNIST数据集的手写数字进行检测。在这个任务中,“一次学会”是可以实现的。此外,在学习了其他4种鱼类后,将FPSA应用于Cifar 100数据集的金鱼识别。在一次学习的帮助下,结果表明机器在EDGE上学习得更快更好。这证明了FPSA在AIoT时代低功耗和低成本的基于突触的一次性学习应用中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Energy Efficient FinFET-based Field Programmable Synapse Array (FPSA) Feasible for One-shot Learning on EDGE AI
A pure logic 14nm FinFET with capabilities of linearly tunable Vth and excellent retention has been implemented as synapses in neuromorphic system. For the first time, a Field Programmable Synapse Array (FPSA) has been adopted to replace conventional R-based memory Synapse Array (RSA). Thanks to the wide range of Vt-tuning ability, 200X on/off ratio, and the ultra-small variability, 12%, results showed that the training power and SN ratio of FPSA are 10 times and 50 times smaller than those of the RSA, respectively. Two applications were demonstrated on FPSA array for one-shot learning applications. First, FPSA is used to detect handwritten digits of MNIST dataset. "Learned it by once" can be achieved in this task. Furthermore, FPSA has been applied to recognize goldfish in Cifar 100 dataset after learned the other 4 fish species. With the assistance from one-shot learning, results show the machine learned it faster and better on EDGE. This demonstrates the feasibility of FPSA for low-power and cost-effective synapse-based one-shot learning applications in the AIoT era.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信