Jing Zhou, L. Wan, Fengwei Dai, Huijuan Wang, Chongshen Song, Tianmin Du, Yanbiao Chu, M. Pan, D. Guidotti, Liqiang Cao, Daquan Yu
{"title":"考虑MOS效应和硅衬底涡流的硅中间体的精确电学仿真与设计优化","authors":"Jing Zhou, L. Wan, Fengwei Dai, Huijuan Wang, Chongshen Song, Tianmin Du, Yanbiao Chu, M. Pan, D. Guidotti, Liqiang Cao, Daquan Yu","doi":"10.1109/ECTC.2012.6248902","DOIUrl":null,"url":null,"abstract":"In this paper, a group of coplanar lines on a silicon dioxide insulating layer on a nominally doped silicon substrate is simulated and measured. Electrical parameters extracted from published data are used and lead to substantially improved agreement with measurements. In addition, several models of redistribution layer (RDL) with different shape-TSVs (through silicon vias) are simulated, along with two different joint structures between TSV and RDL. Simulation result suggest that because the electrical length is very short reflection losses attributed to the structural details of the TSV may be ignored in the applicable frequency band of the TSV. In addition, several optimized transmission line structures are designed and simulated. Results suggest that design criteria used to optimize lines in organic substrates are not directly transferable to a silicon substrate. This paper shows a simple but effective method with which to analyze the influences exerted by the metal oxide semiconductor (MOS) capacitance at the TSV interface and eddy currents in the substrate on a transmission line. Finally, newly de-embedded test structures are provided to extract spice model parameters for TSV modeling.","PeriodicalId":6384,"journal":{"name":"2012 IEEE 62nd Electronic Components and Technology Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Accurate electrical simulation and design optimization for silicon interposer considering the MOS effect and eddy currents in the silicon substrate\",\"authors\":\"Jing Zhou, L. Wan, Fengwei Dai, Huijuan Wang, Chongshen Song, Tianmin Du, Yanbiao Chu, M. Pan, D. Guidotti, Liqiang Cao, Daquan Yu\",\"doi\":\"10.1109/ECTC.2012.6248902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a group of coplanar lines on a silicon dioxide insulating layer on a nominally doped silicon substrate is simulated and measured. Electrical parameters extracted from published data are used and lead to substantially improved agreement with measurements. In addition, several models of redistribution layer (RDL) with different shape-TSVs (through silicon vias) are simulated, along with two different joint structures between TSV and RDL. Simulation result suggest that because the electrical length is very short reflection losses attributed to the structural details of the TSV may be ignored in the applicable frequency band of the TSV. In addition, several optimized transmission line structures are designed and simulated. Results suggest that design criteria used to optimize lines in organic substrates are not directly transferable to a silicon substrate. This paper shows a simple but effective method with which to analyze the influences exerted by the metal oxide semiconductor (MOS) capacitance at the TSV interface and eddy currents in the substrate on a transmission line. Finally, newly de-embedded test structures are provided to extract spice model parameters for TSV modeling.\",\"PeriodicalId\":6384,\"journal\":{\"name\":\"2012 IEEE 62nd Electronic Components and Technology Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 62nd Electronic Components and Technology Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2012.6248902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 62nd Electronic Components and Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2012.6248902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accurate electrical simulation and design optimization for silicon interposer considering the MOS effect and eddy currents in the silicon substrate
In this paper, a group of coplanar lines on a silicon dioxide insulating layer on a nominally doped silicon substrate is simulated and measured. Electrical parameters extracted from published data are used and lead to substantially improved agreement with measurements. In addition, several models of redistribution layer (RDL) with different shape-TSVs (through silicon vias) are simulated, along with two different joint structures between TSV and RDL. Simulation result suggest that because the electrical length is very short reflection losses attributed to the structural details of the TSV may be ignored in the applicable frequency band of the TSV. In addition, several optimized transmission line structures are designed and simulated. Results suggest that design criteria used to optimize lines in organic substrates are not directly transferable to a silicon substrate. This paper shows a simple but effective method with which to analyze the influences exerted by the metal oxide semiconductor (MOS) capacitance at the TSV interface and eddy currents in the substrate on a transmission line. Finally, newly de-embedded test structures are provided to extract spice model parameters for TSV modeling.