钴成分对铂基催化剂析氢电化学行为的影响

IF 3.1 4区 医学 Q2 BIOPHYSICS
Duc Thanh Nguyen, Hang Thi Thuy Nguyen, Hung Cam Ly, An Thi Xuan Duong
{"title":"钴成分对铂基催化剂析氢电化学行为的影响","authors":"Duc Thanh Nguyen, Hang Thi Thuy Nguyen, Hung Cam Ly, An Thi Xuan Duong","doi":"10.35745/afm2022v02.02.0001","DOIUrl":null,"url":null,"abstract":"The hydrogen production from water electrolysis is of interest as a renewable energy generation technology. However, the high price of noble platinum (Pt) catalysts for the hydrogen evolution reaction (HER) is a big challenge to use it. Herein, we fabricate cost-effective CoPt bimetallic alloys and explore the effect of Co composition on the electrochemical behavior of such alloys, which has been rarely reported. A series of Co1-xPtx (x = 0.25; 0.5; 0.75) alloys are prepared via a room-temperature chemical reduction route without using any surfactants/stabilizers that exhibit a uniform distribution in small particle sizes (ca. 3 nm) on the carbon surface. In terms of the HER, the incorporation of a suitable Co proportion into the Pt lattices enhance significantly the HER performance in an acidic environment. For instance, the Co0.5Pt0.5 NPs/C catalyst displays a low onset potential (16.67 mV) and a small Tafel slope (19.60 mV dec-1), which is different from other Co1-xPtx catalysts and commercial C-supported Pt (NPs) catalyst. This research result not only supplies a facile strategy to synthesize alloys but also guides the choice of a suitable proportion of transition metal into Pt lattice for electrochemical reactions in green energy storage and conversion technologies.","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Cobalt Composition on Electrochemical Behavior of Platinum-Based Catalyst towards Hydrogen Evolution Reaction\",\"authors\":\"Duc Thanh Nguyen, Hang Thi Thuy Nguyen, Hung Cam Ly, An Thi Xuan Duong\",\"doi\":\"10.35745/afm2022v02.02.0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hydrogen production from water electrolysis is of interest as a renewable energy generation technology. However, the high price of noble platinum (Pt) catalysts for the hydrogen evolution reaction (HER) is a big challenge to use it. Herein, we fabricate cost-effective CoPt bimetallic alloys and explore the effect of Co composition on the electrochemical behavior of such alloys, which has been rarely reported. A series of Co1-xPtx (x = 0.25; 0.5; 0.75) alloys are prepared via a room-temperature chemical reduction route without using any surfactants/stabilizers that exhibit a uniform distribution in small particle sizes (ca. 3 nm) on the carbon surface. In terms of the HER, the incorporation of a suitable Co proportion into the Pt lattices enhance significantly the HER performance in an acidic environment. For instance, the Co0.5Pt0.5 NPs/C catalyst displays a low onset potential (16.67 mV) and a small Tafel slope (19.60 mV dec-1), which is different from other Co1-xPtx catalysts and commercial C-supported Pt (NPs) catalyst. This research result not only supplies a facile strategy to synthesize alloys but also guides the choice of a suitable proportion of transition metal into Pt lattice for electrochemical reactions in green energy storage and conversion technologies.\",\"PeriodicalId\":14985,\"journal\":{\"name\":\"Journal of Applied Biomaterials & Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomaterials & Functional Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.35745/afm2022v02.02.0001\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Functional Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.35745/afm2022v02.02.0001","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

水电解制氢作为一种可再生能源发电技术备受关注。然而,用于析氢反应(HER)的贵金属铂(Pt)催化剂价格昂贵,是其应用的一大难题。在此,我们制备了具有成本效益的CoPt双金属合金,并探索了Co成分对这种合金电化学行为的影响,这是很少报道的。Co1-xPtx (x = 0.25;0.5;不使用任何表面活性剂/稳定剂,通过室温化学还原法制备出均匀分布在碳表面的小粒径(约3 nm)合金。在酸性环境中,在铂晶格中加入适当比例的钴,显著提高了HER的性能。例如,Co0.5Pt0.5 NPs/C催化剂表现出较低的起始电位(16.67 mV)和较小的Tafel斜率(19.60 mV dec1),这与其他Co1-xPtx催化剂和商用C-负载Pt (NPs)催化剂不同。该研究结果不仅为合金的合成提供了一种简便的策略,而且为绿色储能和转换技术中电化学反应中Pt晶格中过渡金属的选择提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Cobalt Composition on Electrochemical Behavior of Platinum-Based Catalyst towards Hydrogen Evolution Reaction
The hydrogen production from water electrolysis is of interest as a renewable energy generation technology. However, the high price of noble platinum (Pt) catalysts for the hydrogen evolution reaction (HER) is a big challenge to use it. Herein, we fabricate cost-effective CoPt bimetallic alloys and explore the effect of Co composition on the electrochemical behavior of such alloys, which has been rarely reported. A series of Co1-xPtx (x = 0.25; 0.5; 0.75) alloys are prepared via a room-temperature chemical reduction route without using any surfactants/stabilizers that exhibit a uniform distribution in small particle sizes (ca. 3 nm) on the carbon surface. In terms of the HER, the incorporation of a suitable Co proportion into the Pt lattices enhance significantly the HER performance in an acidic environment. For instance, the Co0.5Pt0.5 NPs/C catalyst displays a low onset potential (16.67 mV) and a small Tafel slope (19.60 mV dec-1), which is different from other Co1-xPtx catalysts and commercial C-supported Pt (NPs) catalyst. This research result not only supplies a facile strategy to synthesize alloys but also guides the choice of a suitable proportion of transition metal into Pt lattice for electrochemical reactions in green energy storage and conversion technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Biomaterials & Functional Materials
Journal of Applied Biomaterials & Functional Materials BIOPHYSICS-ENGINEERING, BIOMEDICAL
CiteScore
4.40
自引率
4.00%
发文量
36
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Biomaterials & Functional Materials (JABFM) is an open access, peer-reviewed, international journal considering the publication of original contributions, reviews and editorials dealing with clinical and laboratory investigations in the fast growing field of biomaterial sciences and functional materials. The areas covered by the journal will include: • Biomaterials / Materials for biomedical applications • Functional materials • Hybrid and composite materials • Soft materials • Hydrogels • Nanomaterials • Gene delivery • Nonodevices • Metamaterials • Active coatings • Surface functionalization • Tissue engineering • Cell delivery/cell encapsulation systems • 3D printing materials • Material characterization • Biomechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信