Lis Tavares Ordones Lemos, Fábio Ponciano de Deus, Valter Carvalho de Andrade Júnior, Michael Silveira Thebaldi, Marcio Mesquita, Rodrigo César de Almeida
{"title":"磁处理水灌溉卷心莴苣的开发与生产","authors":"Lis Tavares Ordones Lemos, Fábio Ponciano de Deus, Valter Carvalho de Andrade Júnior, Michael Silveira Thebaldi, Marcio Mesquita, Rodrigo César de Almeida","doi":"10.17159/wsa/2021.v47.i4.3863","DOIUrl":null,"url":null,"abstract":"Irrigated agriculture has become a concern, given the scarcity of freshwater. To reduce its water consumption, new techniques and technologies have been proposed. Based on this, the objective of this work was to evaluate the influence of different soil water tensions at initiation of irrigation with magnetically treated water, on ‘iceberg’ lettuce Lucy Brown (Lactuca Sativa L.) development and production. The experiment was conducted in a greenhouse, using a completely randomized factorial design, to evaluate two water types (magnetically treated water – MW and ordinary water – OW) and four soil water tensions at initiation of irrigation (T1 – 15 kPa, T2 – 25 kPa, T3 – 40 kPa and T4 – 70 kPa), with three replicates. Tensiometers were used to estimate soil water tension. The evaluated parameters were: aerial part fresh and dry total mass; commercial head fresh and dry mass, root fresh and dry mass; stem fresh and dry mass; stem length and diameter; percentage of leaves with tip burn, total and commercial yield; water use efficiency related to total and commercial yield; plant exposed area; and dry matter content. Despite achieving greater water use efficiency, the magnetic treatment may have hindered the removal of water from the soil by the crop, especially at increased soil water tension at initiation of irrigation.","PeriodicalId":23623,"journal":{"name":"Water SA","volume":"43 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development and production of iceberg lettuce irrigated with magnetically treated water\",\"authors\":\"Lis Tavares Ordones Lemos, Fábio Ponciano de Deus, Valter Carvalho de Andrade Júnior, Michael Silveira Thebaldi, Marcio Mesquita, Rodrigo César de Almeida\",\"doi\":\"10.17159/wsa/2021.v47.i4.3863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Irrigated agriculture has become a concern, given the scarcity of freshwater. To reduce its water consumption, new techniques and technologies have been proposed. Based on this, the objective of this work was to evaluate the influence of different soil water tensions at initiation of irrigation with magnetically treated water, on ‘iceberg’ lettuce Lucy Brown (Lactuca Sativa L.) development and production. The experiment was conducted in a greenhouse, using a completely randomized factorial design, to evaluate two water types (magnetically treated water – MW and ordinary water – OW) and four soil water tensions at initiation of irrigation (T1 – 15 kPa, T2 – 25 kPa, T3 – 40 kPa and T4 – 70 kPa), with three replicates. Tensiometers were used to estimate soil water tension. The evaluated parameters were: aerial part fresh and dry total mass; commercial head fresh and dry mass, root fresh and dry mass; stem fresh and dry mass; stem length and diameter; percentage of leaves with tip burn, total and commercial yield; water use efficiency related to total and commercial yield; plant exposed area; and dry matter content. Despite achieving greater water use efficiency, the magnetic treatment may have hindered the removal of water from the soil by the crop, especially at increased soil water tension at initiation of irrigation.\",\"PeriodicalId\":23623,\"journal\":{\"name\":\"Water SA\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water SA\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.17159/wsa/2021.v47.i4.3863\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water SA","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.17159/wsa/2021.v47.i4.3863","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Development and production of iceberg lettuce irrigated with magnetically treated water
Irrigated agriculture has become a concern, given the scarcity of freshwater. To reduce its water consumption, new techniques and technologies have been proposed. Based on this, the objective of this work was to evaluate the influence of different soil water tensions at initiation of irrigation with magnetically treated water, on ‘iceberg’ lettuce Lucy Brown (Lactuca Sativa L.) development and production. The experiment was conducted in a greenhouse, using a completely randomized factorial design, to evaluate two water types (magnetically treated water – MW and ordinary water – OW) and four soil water tensions at initiation of irrigation (T1 – 15 kPa, T2 – 25 kPa, T3 – 40 kPa and T4 – 70 kPa), with three replicates. Tensiometers were used to estimate soil water tension. The evaluated parameters were: aerial part fresh and dry total mass; commercial head fresh and dry mass, root fresh and dry mass; stem fresh and dry mass; stem length and diameter; percentage of leaves with tip burn, total and commercial yield; water use efficiency related to total and commercial yield; plant exposed area; and dry matter content. Despite achieving greater water use efficiency, the magnetic treatment may have hindered the removal of water from the soil by the crop, especially at increased soil water tension at initiation of irrigation.
期刊介绍:
WaterSA publishes refereed, original work in all branches of water science, technology and engineering. This includes water resources development; the hydrological cycle; surface hydrology; geohydrology and hydrometeorology; limnology; salinisation; treatment and management of municipal and industrial water and wastewater; treatment and disposal of sewage sludge; environmental pollution control; water quality and treatment; aquaculture in terms of its impact on the water resource; agricultural water science; etc.
Water SA is the WRC’s accredited scientific journal which contains original research articles and review articles on all aspects of water science, technology, engineering and policy. Water SA has been in publication since 1975 and includes articles from both local and international authors. The journal is issued quarterly (4 editions per year).