D. Lehninger, M. Lederer, T. Ali, T. Kämpfe, K. Mertens, K. Seidel
{"title":"在BEoL中实现铁电存储器——迈向先进的神经形态计算架构","authors":"D. Lehninger, M. Lederer, T. Ali, T. Kämpfe, K. Mertens, K. Seidel","doi":"10.1109/IITC51362.2021.9537346","DOIUrl":null,"url":null,"abstract":"Advanced non-volatile memory concepts such as the 1T1C ferroelectric (FE) random-access memory (FeRAM) and the 1T1C FE field-effect transistor (FeFET) can be realized by connecting a metal-ferroelectric-metal (MFM) capacitor placed in the back end of line (BEoL) of a microchip to the drain and gate contacts of a standard logic device, respectively. With the vertical distributed select devices in the front-end of line (FEoL) and the storage elements in the BEoL, both concepts increase the effective memory density of a microchip without introducing major changes in the FEoL fabrication technology. However, for advanced neuromorphic computing architectures, the 1T1C FeFET is the device of choice, since it provides non-destructive readout. The most promising material for the integration of FE non-volatile memory functionalities into the BEoL is Zr doped HfO2 (HZO). It crystallizes at low temperatures in the orthorhombic phase (the one with FE properties) and with a polycrystalline structure. The latter is important to enable analogue like switching in synaptic devices. Herein, the above-mentioned memory concepts are introduced and key steps to optimize the HZO films for the BEoL integration and for the neuromorphic computing use case are described.","PeriodicalId":6823,"journal":{"name":"2021 IEEE International Interconnect Technology Conference (IITC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Enabling Ferroelectric Memories in BEoL - towards advanced neuromorphic computing architectures\",\"authors\":\"D. Lehninger, M. Lederer, T. Ali, T. Kämpfe, K. Mertens, K. Seidel\",\"doi\":\"10.1109/IITC51362.2021.9537346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced non-volatile memory concepts such as the 1T1C ferroelectric (FE) random-access memory (FeRAM) and the 1T1C FE field-effect transistor (FeFET) can be realized by connecting a metal-ferroelectric-metal (MFM) capacitor placed in the back end of line (BEoL) of a microchip to the drain and gate contacts of a standard logic device, respectively. With the vertical distributed select devices in the front-end of line (FEoL) and the storage elements in the BEoL, both concepts increase the effective memory density of a microchip without introducing major changes in the FEoL fabrication technology. However, for advanced neuromorphic computing architectures, the 1T1C FeFET is the device of choice, since it provides non-destructive readout. The most promising material for the integration of FE non-volatile memory functionalities into the BEoL is Zr doped HfO2 (HZO). It crystallizes at low temperatures in the orthorhombic phase (the one with FE properties) and with a polycrystalline structure. The latter is important to enable analogue like switching in synaptic devices. Herein, the above-mentioned memory concepts are introduced and key steps to optimize the HZO films for the BEoL integration and for the neuromorphic computing use case are described.\",\"PeriodicalId\":6823,\"journal\":{\"name\":\"2021 IEEE International Interconnect Technology Conference (IITC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Interconnect Technology Conference (IITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC51362.2021.9537346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Interconnect Technology Conference (IITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC51362.2021.9537346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enabling Ferroelectric Memories in BEoL - towards advanced neuromorphic computing architectures
Advanced non-volatile memory concepts such as the 1T1C ferroelectric (FE) random-access memory (FeRAM) and the 1T1C FE field-effect transistor (FeFET) can be realized by connecting a metal-ferroelectric-metal (MFM) capacitor placed in the back end of line (BEoL) of a microchip to the drain and gate contacts of a standard logic device, respectively. With the vertical distributed select devices in the front-end of line (FEoL) and the storage elements in the BEoL, both concepts increase the effective memory density of a microchip without introducing major changes in the FEoL fabrication technology. However, for advanced neuromorphic computing architectures, the 1T1C FeFET is the device of choice, since it provides non-destructive readout. The most promising material for the integration of FE non-volatile memory functionalities into the BEoL is Zr doped HfO2 (HZO). It crystallizes at low temperatures in the orthorhombic phase (the one with FE properties) and with a polycrystalline structure. The latter is important to enable analogue like switching in synaptic devices. Herein, the above-mentioned memory concepts are introduced and key steps to optimize the HZO films for the BEoL integration and for the neuromorphic computing use case are described.