基于训练神经网络的纹理区域检测

A. Naumenko, S. Krivenko, V. Lukin, K. Egiazarian
{"title":"基于训练神经网络的纹理区域检测","authors":"A. Naumenko, S. Krivenko, V. Lukin, K. Egiazarian","doi":"10.1109/MSMW.2016.7538174","DOIUrl":null,"url":null,"abstract":"In this paper we consider an important practical aspect of texture region detection in remote sensing images. One specific feature of our study is that we assume a processed image noisy with a priori known type and parameters of the noise. Another specific feature is that we try to detect textural regions for a wide variety of textures without having a priori knowledge of their properties. The considered task is solved by means of trained neural networks. In the paper, we analyze the aspects of choosing input local parameters used in detection (recognition) and carrying out training. The verification results provide valuable conclusions for these aspects.","PeriodicalId":6504,"journal":{"name":"2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW)","volume":"286 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Texture region detection by trained neural network\",\"authors\":\"A. Naumenko, S. Krivenko, V. Lukin, K. Egiazarian\",\"doi\":\"10.1109/MSMW.2016.7538174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider an important practical aspect of texture region detection in remote sensing images. One specific feature of our study is that we assume a processed image noisy with a priori known type and parameters of the noise. Another specific feature is that we try to detect textural regions for a wide variety of textures without having a priori knowledge of their properties. The considered task is solved by means of trained neural networks. In the paper, we analyze the aspects of choosing input local parameters used in detection (recognition) and carrying out training. The verification results provide valuable conclusions for these aspects.\",\"PeriodicalId\":6504,\"journal\":{\"name\":\"2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW)\",\"volume\":\"286 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSMW.2016.7538174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSMW.2016.7538174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了遥感图像中纹理区域检测的一个重要的实际问题。我们研究的一个具体特点是,我们假设处理后的图像具有先验已知的噪声类型和参数。另一个具体的特点是,我们试图检测纹理区域的各种各样的纹理没有先验知识的性质。所考虑的任务通过训练的神经网络来解决。本文分析了检测(识别)中输入局部参数的选择和训练等方面的问题。验证结果为这些方面提供了有价值的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Texture region detection by trained neural network
In this paper we consider an important practical aspect of texture region detection in remote sensing images. One specific feature of our study is that we assume a processed image noisy with a priori known type and parameters of the noise. Another specific feature is that we try to detect textural regions for a wide variety of textures without having a priori knowledge of their properties. The considered task is solved by means of trained neural networks. In the paper, we analyze the aspects of choosing input local parameters used in detection (recognition) and carrying out training. The verification results provide valuable conclusions for these aspects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信